Jacobi 多项式是超几何函数 F ( α , β , γ , z ) {\displaystyle F(\alpha, \beta, \gamma, z)} 的特殊情形,它是 α {\displaystyle \alpha} 或 β {\displaystyle \beta} 为负整数 − n {\displaystyle -n} 时的超几何函数,是多项式,又称超几何多项式。
一种定义是 F ( − n , β , γ , z ) {\displaystyle F(-n, \beta, \gamma, z)} ,其中 n {\displaystyle n} 是正整数,即有 F ( − n , β , γ , z ) = ∑ k = 0 ∞ ( − n ) k ( β ) k k ! ( γ ) k z k = ∑ k = 0 ∞ ( − 1 ) k ( n k ) ( β ) k ( γ ) k z k . {\displaystyle F(-n, \beta, \gamma, z) = \sum_{k=0}^\infty \dfrac{(-n)_k (\beta)_k}{k! (\gamma)_k} z^k = \sum_{k=0}^\infty (-1)^k \binom{n}{k} \dfrac{(\beta)_k}{(\gamma)_k} z^k.} 另一种常见的定义是直接规定记号 P n ( α , β ) ( x ) = ( n + α n ) F ( − n , n + α + β + 1 , α + 1 , 1 − x 2 ) . {\displaystyle P_n^{(\alpha, \beta)} (x) = \binom{n+\alpha}{n} F \!\! \left(-n, n+\alpha+\beta+1, \alpha+1, \dfrac{1-x}{2} \right).} 令 z = 1 − x 2 , γ = α + 1 , p = α + β + 1 {\displaystyle z = \dfrac{1-x}{2}, \gamma = \alpha+1, p = \alpha+\beta+1} ,有 P n ( α , β ) ( x ) = ( n + γ − 1 n ) F ( − n , p + n , γ , z ) . {\displaystyle P_n^{(\alpha, \beta)} (x) = \binom{n+\gamma-1}{n} F(-n, p+n, \gamma, z).}
978-7-3010-4530-5