Goldstine 定理是泛函分析中的一个定理,它表明 Banach 空间中的任意强闭集的典则映射象(在嵌入到它的第二共轭空间中的映射)是在*弱拓扑下稠密的集合。
内容[]
假设有 Banach 空间,是典则映射,那么是中的*弱稠密子集。
如果自反,那么,上述定理表明,非自反的情况下有某种稠密性。
证明[]
我们要证明,在拓扑空间中,对任意点,以及它的任意一个邻域,中总含有中的点。注意到弱拓扑的邻域基性质,这里我们不妨取 其中给定,给定。我们需要找到某些使得 令然后使用 Helly 引理,我们只需要证明 注意到 这就证明了定理。
参考资料
- Haïm Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science&Business Media, 2010-11, ISBN
978-0-3877-0913-0
.
线性算子理论(学科代码:1105710,GB/T 13745—2009) | |
---|---|
基本理论 | 线性算子 ▪ 开映射定理 ▪ 闭图像定理 ▪ 共鸣定理 ▪ Banach-Steinhaus 定理 ▪ Gelfand 引理 ▪ Riesz 表示定理 ▪ Lax-Milgram 定理 ▪ Lax 等价定理 ▪ Hahn-Banach 定理 ▪ 凸集分离定理 ▪ 自伴算子 ▪ 正定算子 ▪ 酉算子 |
共轭理论 和弱拓扑 |
共轭空间 ▪ 第二共轭空间 ▪ 共轭算子 ▪ 自反空间 ▪ 弱收敛 ▪ 弱拓扑 ▪ *弱拓扑 ▪ Mazur 定理 ▪ Banach-Alaoglu 定理 ▪ Eberlein-Schmulyan 定理 ▪ Goldstine 定理 |
凸性 | 一致凸空间和凸模 ▪ 一致光滑空间和光滑模 ▪ Milman-Pettis 定理 ▪ 严格凸范数 ▪ 最佳逼近 |
紧算子和 谱理论 |
谱 ▪ 谱函数 ▪ 谱公式 ▪ Neumann 级数 ▪ 不变子空间 ▪ 紧连续线性算子 ▪ Riesz-Schauder 理论 ▪ Riesz-Fredholm 定理 |
算子积分 | 算子值函数 ▪ Pettis 积分 ▪ Bochner 积分 ▪ 向量值测度 ▪ Vitali-Hahn-Saks 定理 |
所在位置:数学(110)→ 泛函分析(11057)→ 线性算子理论(1105710) |