数学分析中的零点定理给出了一种求某函数的零点的一句。
内容[]
连续于闭区间上的一元实函数,如果有,则必存在使得
其证明要涉及到实数理论。
可以将它推广到多元函数场合:
连续于区域上的函数,如果,则必对于任意连接的曲线都有
参考资料
- 欧阳光中, 朱学炎, 金福临, 陈传璋, 《数学分析》, 高等教育出版社, 北京, 2018-08, ISBN
978-7-0404-9718-2
.
微分学(学科代码:1103410,GB/T 13745—2009) | |
---|---|
极限论 | 数列 ▪ 数列极限 ▪ 上极限和下极限 ▪ 无穷小量以及无穷大量 ▪ 两面夹法则 ▪ Stolz 定理 ▪ Toeplitz 定理 ▪ Stirling 公式 ▪ 函数极限 ▪ 第二重要极限 ▪ 不定型极限与 L' Hospital 法则 ▪ Heine 定理 |
一元连续性 | 连续函数 ▪ 间断点 ▪ 一致连续 ▪ Cantor 一致连续性定理 ▪ Lipschitz 连续和 Hölder 连续 ▪ 基本初等函数 ▪ 幂平均 |
一元微分 | 导数 ▪ 基本初等函数的导数 ▪ 求导法则 ▪ 高阶导数 ▪ 莱布尼兹公式(高阶导数) ▪ 微分以及差分 ▪ Darboux 定理 ▪ 零点定理 |
中值定理 微分的应用 |
Fermat 定理 ▪ Rolle 定理 ▪ Lagrange 中值定理 ▪ Cauchy 中值定理 ▪ Taylor 公式 ▪ 函数极值 ▪ 函数凸性 ▪ 渐近线 ▪ 曲线的曲率 |
多元极限 多元微分 |
Euclid 空间点集 ▪ Euclid 空间中的基本定理 ▪ 多元函数 ▪ 多元函数的连续性 ▪ 偏导数 ▪ 全微分 ▪ 隐函数求导法 ▪ 方向导数 ▪ 多元 Taylor 展开 ▪ 多元函数的极值 ▪ 多元函数的条件极值与 Lagrange 乘数法 ▪ 隐函数 |
所在位置:数学(110)→ 数学分析(11034)→ 微分学(1103410) |