线性变换空间是一个为的线性空间,因此,对于任意的,必存在不全为零的数,使得
在这一系列线性变换下,最终将向量化为了零向量,这可以降低线性变换的次数,具有实际意义,因此我们引入这样的零化概念。
零化多项式[]
假设同上,使得的多项式称为线性变换的零化多项式(annihilating polynomial)。
而线性变换空间是一个为的线性空间,因此上述零化多项式总是存在的。另一方面,在选定一组基底后,线性变换运算都可以同构到矩阵运算上去,因此我们可以讨论矩阵的零化多项式,它的意义和线性变换类似。而对应到矩阵上是,零化多项式就是一个矩阵多项式。
例如,对于数量矩阵,由于,故就是它的一个零化多项式。
Cayley-Hamilton 定理[]
假设如上,则
这表明,线性变换的特征多项式就是它的一个零化多项式。证明可用数学归纳法完成。
应用[]
这可用来计算某些高次矩阵,例如已知,计算。
我们可以先找的特征多项式为,所以由 Cayley-Hamilton 定理,有,再用归纳法证明,可知的次数每降两次就加一个,据此可计算出答案。
上下节[]
- 上一节:特征多项式
- 下一节:最小多项式
参考资料
- 郭聿琦, 岑嘉评, 王正攀, 《高等代数教程》, 科学出版社, 北京, 2014-07, ISBN
978-7-0304-0417-6
.
- 郭聿琦, 岑嘉评, 王正攀, 《高等代数教程》, 科学出版社, 北京, 2014-07, ISBN
线性代数(学科代码:1102110,GB/T 13745—2009) | |
---|---|
矩阵 | 矩阵的转置 ▪ 矩阵的逆 ▪ 对角矩阵 ▪ 初等矩阵 ▪ 等价标准型 ▪ 分块矩阵 ▪ 伴随矩阵 ▪ 酉矩阵(正交矩阵) ▪ Hermite 矩阵(实对称矩阵) ▪ 正规矩阵(实正规矩阵) ▪ 幂等矩阵 ▪ 幂零矩阵 ▪ 对合矩阵 ▪ 秩一矩阵 >>另参见数值分析<< |
行列式 | Vandermonde 行列式 ▪ 行列式的展开 ▪ Laplace 展开 ▪ 三角行列式 ▪ 三对角行列式 ▪ 行列式的计算 ▪ 析因子法 |
向量组理论 | 向量组 ▪ 替换定理 ▪ 矩阵的秩 ▪ 矩阵的迹 |
线性方程组 | Cramer 法则 ▪ 基础解系(解的结构)>>另参见数值分析<< |
线性空间和内积空间 | 线性空间的维数和基底 ▪ 线性空间的坐标变换 ▪ 线性空间的同构 ▪ 线性子空间 ▪ 线性空间的直和 ▪ 维数公式 ▪ 线性空间上的线性函数 ▪ 双线性函数 ▪ 对称双线性度量空间 ▪ 正交补空间 ▪ 内积 ▪ Euclid 空间 ▪ 向量到子空间的距离 ▪ 最小二乘法 ▪ Gram-Schmidt 正交化 |
线性变换 | 线性映射 ▪ 线性变换 ▪ 线性变换的运算 ▪ 自同构变换 ▪ 线性变换的特征值和特征向量 ▪ 特征子空间 ▪ 特征多项式 ▪ 零化多项式 ▪ 最小多项式 ▪ 关联矩阵的特征根 ▪ 线性空间的直和分解 ▪ 幂等线性变换 ▪ 正交变换 ▪ 正定矩阵 ▪ 半正定矩阵 |
矩阵标准型 | 相似标准型 ▪ λ-矩阵 ▪ 数字矩阵的特征矩阵 ▪ Frobenius 标准形 ▪ Jacobson 标准形 ▪ Jordan 标准形 |
二次型理论 | 二次型(实二次型) ▪ 二次型的化简 ▪ 正定二次型 ▪ 一对实二次型同时化简 |
所在位置:数学(110)→ 代数学(11021)→ 线性代数(1102110) |