在数论中,除数和函数是一种数论函数, σ ( n ) = ∑ d | n d , n ∈ N {\displaystyle \sigma (n) = \sum_{d|n} d, n \in \N} ,表示 n {\displaystyle n} 的所有正因子的和。
设 t ∈ R , σ t ( n ) = ∑ d : d | n d t . {\displaystyle t \in \R, \sigma_t(n) = \sum_{d:d|n} d^t.} 显然 σ 1 ( n ) = σ ( n ) . {\displaystyle \sigma_1(n) = \sigma(n).} 有 σ t ( n ) = n t σ − t ( n ) . {\displaystyle \sigma_t(n) = n^t \sigma_{-t}(n).}
若设标准分解式 n = p 1 α 1 p 2 α 2 p 3 α 3 ⋯ p r α r {\displaystyle n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \cdots p_r^{\alpha_r}} ,则有计算公式 σ t ( n ) = ∏ j = 1 r p j t ( α j + 1 ) − 1 p j t − 1 . {\displaystyle \sigma_t(n) = \prod_{j=1}^r \dfrac{p_j^{t(\alpha_j+1)} - 1}{p_j^t - 1}.}