在概率论和数理统计中,示性函数是一个转换概率的工具,它实质上是一个可测集上的特征函数。
随机事件[]
一个随机事件的示性函数可以表示为:该事件发生时函数取值为1,不发生时取值为0.它可以将一个随机现象定量转化为随机变量。这实际上对应了 Bernoulli 概型中两点分布的情形,且如果该事件发生的概率为,那么
二值随机变量[]
一个随机变量如果只有两种取值,我们称其为二值随机变量。假设是二值随机变量,且取值,若记那么它的示性函数为 因此
示性函数的基本性质是 它有和概率一样的性质,例如
统计应用[]
示性函数的期望是一个随机变量取某些值的概率,这一点在数理统计中有一些应用,例如考虑一个点估计问题:假设有取自两点分布总体的样本,那么待估函数就可以写作。进而令就是的无偏估计。
参考资料
- 李贤平, 《概率论基础(第3版)》, 高等教育出版社, 北京, 2010-04, ISBN
978-7-0402-8890-2
.
概率分布(学科代码:1106420,GB/T 13745—2009) | |
---|---|
概率公理化 | 随机事件 ▪ 样本空间 ▪ De Morgan 定理 ▪ 概率空间 ▪ 古典概型 ▪ 几何概型 ▪ 条件概率 ▪ 事件独立性 ▪ 独立重复试验 ▪ Bernoulli 概型 |
随机变量 | 离散型随机变量 ▪ 连续型随机变量 ▪ 随机变量的函数 ▪ 随机向量 ▪ 边缘分布 ▪ 条件分布 ▪ 随机变量的独立性 ▪ 随机向量的函数 ▪ 极差分布 |
随机变量的特征 | 数学期望 ▪ 方差 ▪ 协方差 ▪ 相关系数 ▪ 矩 ▪ 母函数 ▪ 矩量母函数 ▪ 特征函数 ▪ 示性函数 ▪ 中位数 ▪ 众数 ▪ 峰度 ▪ 偏度 |
离散概率分布 | 二项分布 ▪ 几何分布 ▪ Pascal 分布 ▪ Poisson 分布 ▪ 超几何分布 ▪ 对数分布 ▪ 负二项分布 ▪ 多项分布 ▪ 多元超几何分布 |
连续概率分布 | 正态分布 ▪ 均匀分布 ▪ 指数分布 ▪ 对数正态分布 ▪ Γ 分布 ▪ χ 分布 ▪ β 分布 ▪ Rayleigh 分布 ▪ Cauchy 分布 ▪ Pareto 分布 ▪ Laplace 分布 ▪ Weibull 分布 ▪ Maxwell 分布律 ▪ 二元正态分布 ▪ 多元正态分布 |
统计三大分布 | χ² 分布 ▪ F 分布 ▪ t 分布 ▪ 非中心 χ² 分布 ▪ 非中心 F 分布 ▪ 非中心 t 分布 |
所在位置:数学(110)→ 概率论(11064)→ 概率分布(1106420) |