为了更深入地研究线性变换的特征值和特征向量,这里引出特征子空间的概念。
定义[]
由特征向量性质的第2、3条,我们可以知道 因此我们把这个子空间叫做的特征子空间(eigen-subspace),它是包含了属于的特征向量和零向量的集合,显然对加法和数乘是封闭的,特征子空间也记作(引入核的概念后得到)。
维数[]
考虑线性方程组 这个方程组解空间的维数为
解空间中的向量就是特征向量的坐标。
在同构的意义下,特征子空间的维数和上述方程组解空间的维数相等,故
几何重数[]
我们把特征子空间的维数也称作对应于特征根的几何重数(geometric multiplicity)。
如果一个矩阵的几何重数和代数重数相等,我们就称这个矩阵是非亏损的,反之称为亏损的。
上下节[]
- 上一节:线性变换的特征值和特征向量
- 下一节:特征多项式
参考资料
- 郭聿琦, 岑嘉评, 王正攀, 《高等代数教程》, 科学出版社, 北京, 2014-07, ISBN
978-7-0304-0417-6
.
- 郭聿琦, 岑嘉评, 王正攀, 《高等代数教程》, 科学出版社, 北京, 2014-07, ISBN
线性代数(学科代码:1102110,GB/T 13745—2009) | |
---|---|
矩阵 | 矩阵的转置 ▪ 矩阵的逆 ▪ 对角矩阵 ▪ 初等矩阵 ▪ 等价标准型 ▪ 分块矩阵 ▪ 伴随矩阵 ▪ 酉矩阵(正交矩阵) ▪ Hermite 矩阵(实对称矩阵) ▪ 正规矩阵(实正规矩阵) ▪ 幂等矩阵 ▪ 幂零矩阵 ▪ 对合矩阵 ▪ 秩一矩阵 >>另参见数值分析<< |
行列式 | Vandermonde 行列式 ▪ 行列式的展开 ▪ Laplace 展开 ▪ 三角行列式 ▪ 三对角行列式 ▪ 行列式的计算 ▪ 析因子法 |
向量组理论 | 向量组 ▪ 替换定理 ▪ 矩阵的秩 ▪ 矩阵的迹 |
线性方程组 | Cramer 法则 ▪ 基础解系(解的结构)>>另参见数值分析<< |
线性空间和内积空间 | 线性空间的维数和基底 ▪ 线性空间的坐标变换 ▪ 线性空间的同构 ▪ 线性子空间 ▪ 线性空间的直和 ▪ 维数公式 ▪ 线性空间上的线性函数 ▪ 双线性函数 ▪ 对称双线性度量空间 ▪ 正交补空间 ▪ 内积 ▪ Euclid 空间 ▪ 向量到子空间的距离 ▪ 最小二乘法 ▪ Gram-Schmidt 正交化 |
线性变换 | 线性映射 ▪ 线性变换 ▪ 线性变换的运算 ▪ 自同构变换 ▪ 线性变换的特征值和特征向量 ▪ 特征子空间 ▪ 特征多项式 ▪ 零化多项式 ▪ 最小多项式 ▪ 关联矩阵的特征根 ▪ 线性空间的直和分解 ▪ 幂等线性变换 ▪ 正交变换 ▪ 正定矩阵 ▪ 半正定矩阵 |
矩阵标准型 | 相似标准型 ▪ λ-矩阵 ▪ 数字矩阵的特征矩阵 ▪ Frobenius 标准形 ▪ Jacobson 标准形 ▪ Jordan 标准形 |
二次型理论 | 二次型(实二次型) ▪ 二次型的化简 ▪ 正定二次型 ▪ 一对实二次型同时化简 |
所在位置:数学(110)→ 代数学(11021)→ 线性代数(1102110) |