三维空间中曲面的测地平行坐标系是借助测地线给出的曲面上的一种局部坐标系,它是平面上平面直角坐标系的推广,在研究曲面的内蕴性质时应用广泛。
定义[]
假设有一张正则曲面,在曲面上点的某个邻域中,取一条过的测地线,然后在的每一点做一条和曲线正交的测地线,我们把这些测地线全体记作,那么这族曲线会覆盖的一个邻域,可以证明,存在曲面的参数使得是曲线族,而对应了
进一步,可以经过适当的参数变换使得是曲线的弧长参数,于是可以得到这样的参数系使得的第一基本形式为
且满足条件
这样的参数系成为曲面在点的测地平行坐标系。
参考资料
- 彭家贵, 陈卿, 《微分几何(第2版)》, 高等教育出版社, 北京, 2011-11, ISBN
978-7-0405-6950-6
.
微分几何学(学科代码:1102745,GB/T 13745—2009) | |
---|---|
曲线论 | 曲线 ▪ 参数曲线 ▪ 正则曲线 ▪ 弧长参数 ▪ 曲率 ▪ 挠率 ▪ Frenet 标架 ▪ 向量积 ▪ 曲线论基本定理 ▪ 混合积 ▪ 渐屈线 ▪ 四顶点定理 ▪ 旋转指数定理 |
曲面局部理论 | 曲面 ▪ 曲面的第一基本形式 ▪ 曲面的第二基本形式 ▪ 曲面的第三基本形式 ▪ 法曲率 ▪ 主曲率 ▪ Gauss 曲率 ▪ Dupin 标线 ▪ Weingarten 变换 ▪ Riemann 度量 ▪ Gauss 方程和 Codazzi 方程 ▪ 曲面的正交标架 |
曲面整体理论 | Euler 示性数 ▪ Gauss-Bonnet 公式 ▪ 紧致曲面 ▪ 凸曲面 ▪ 完备曲面 ▪ 常 Gauss 曲率曲面(sine-Gordon 方程) ▪ Hilbert 定理 ▪ 常平均曲率曲面(Hopf 微分) ▪ 极小曲面 ▪ 稳定极小曲面 |
特殊类型曲面 | 直纹面(包括可展曲面,正螺面,切线面) ▪ 旋转面(包括柱面,锥面,伪球面,悬链面) ▪ 全脐点曲面 |
所在位置:数学(110)→ 几何学(11027)→ 微分几何学(1102745) |