性质[]
- 在扩充复平面上,整函数只以无穷远点为它的唯一奇点。
- Liouville 定理:全复平面上有界(模有界)的整函数必为常函数。
- 一整函数是常函数当且仅当无穷远点是该函数的可去奇点。
- 多项式函数都是整函数,是它的阶极点。
- 非多项式函数的整函数称为超越整函数,是它的本质奇点,这类函数的泰勒展开有无穷多项。
- 整函数可以在全复平面上任意一点进行 泰勒展开。
- 全平面上单值解析的整函数只有一次函数
参见[]
参考资料
- 钟玉泉, 《复变函数论(第五版)》, 高等教育出版社, 北京, 2021-03, ISBN
978-7-0405-5587-5
.
单复变函数论(学科代码:1104120,GB/T 13745—2009) | |
---|---|
复数理论 | 复平面 ▪ 复数列 ▪ 棣莫弗公式 ▪ 复球面 ▪ 欧拉公式 ▪ 复几何 |
复变函数以及微分理论 | 复变函数的极限 ▪ 复变函数的连续性 ▪ 复变函数的导数 ▪ 解析函数 ▪ 复指数函数 ▪ 复三角函数 ▪ 复双曲函数 ▪ 复指数系函数的几何形态 ▪ 多值函数 ▪ 辐角函数 ▪ 复对数函数 ▪ 复根式函数 ▪ 复幂以及一般幂函数 ▪ 复反三角函数 |
复变函数的积分理论 | 复变函数的积分 ▪ Cauchy 积分定理 ▪ 复变函数的不定积分 ▪ Cauchy 积分公式 ▪ Liouville 定理 ▪ Cauchy 型积分 |
复变函数的级数理论 | 复数项级数 ▪ 复函数项级数、复幂级数 ▪ 解析函数的泰勒展式 ▪ 解析函数的零点性质 ▪ 解析函数的洛朗展式 ▪ 解析函数的孤立奇点 ▪ 解析函数的无穷远点性质 ▪ 留数理论 ▪ 留数的应用 ▪ 对数留数 |
复变函数的几何理论 | 解析变换 ▪ 分式线性变换 ▪ 共形映射 ▪ 解析开拓 ▪ 完全解析函数 ▪ 整函数 ▪ 亚纯函数 |
所在位置:数学(110)→ 函数论(11041)→ 单复变函数论(1104120) |