垂心是三角形三条高的交点,但值得在解题过程中注意的是,垂心可能不在三角形内.
由 Ceva 定理易证,但为了导出它的向量性质,这里采用向量法证明.
已知: △ A B C {\displaystyle \triangle{A B C}} 中, A H ⊥ B C , B H ⊥ A C {\displaystyle AH\perp BC,BH\perp AC} .
求证: C H ⊥ A B {\displaystyle CH \perp AB } .
证明:由题意得 H A → ⋅ ( H B → − H C → ) = 0 {\displaystyle {\overrightarrow {HA}}\cdot ({\overrightarrow {HB}}-{\overrightarrow {HC}})=0} 所以 H A → ⋅ H B → = H A → ⋅ H C → {\displaystyle {\overrightarrow {HA}}\cdot {\overrightarrow {HB}}={\overrightarrow {HA}}\cdot {\overrightarrow {HC}}} 同理, H B → ⋅ H A → = H B → ⋅ H C → {\displaystyle {\overrightarrow {HB}}\cdot {\overrightarrow {HA}}={\overrightarrow {HB}}\cdot {\overrightarrow {HC}}} 即 H C → ⋅ H A → = H C → ⋅ H B → {\displaystyle {\overrightarrow {HC}}\cdot {\overrightarrow {HA}}={\overrightarrow {HC}}\cdot {\overrightarrow {HB}}} 因此 H C → ⋅ ( H A → − H B → ) = 0 {\displaystyle {\overrightarrow {HC}}\cdot ({\overrightarrow {HA}}-{\overrightarrow {HB}})=0} ,即 C H ⊥ A B {\displaystyle CH \perp AB } . Q.E.D.