在概率论中,协方差(covariance)是衡量多个随机变量或一个随机向量的各分量见相关性的指标之一,是定义相关系数的基础。
概念[]
设有两个随机变量,它们都有数学期望,如果下式存在 我们就称是这两个随机变量的协方差,其记号是英文单词 covariance 的前三个字母。
显然它有如下性质:
- 正定性:,它就是的方差;
- 对称性:
基于以上两点,我们可以将协方差理解为一种内积。
协方差矩阵[]
设有一个随机向量,如果下式存在,我们就称之为随机向量的协方差矩阵。 显然它是一个非负定矩阵,即 若以记作该矩阵的特征根,则有
性质[]
- 特别地,
上下节[]
参考资料
- 李贤平, 《概率论基础(第3版)》, 高等教育出版社, 北京, 2010-04, ISBN
978-7-0402-8890-2
.
概率分布(学科代码:1106420,GB/T 13745—2009) | |
---|---|
概率公理化 | 随机事件 ▪ 样本空间 ▪ De Morgan 定理 ▪ 概率空间 ▪ 古典概型 ▪ 几何概型 ▪ 条件概率 ▪ 事件独立性 ▪ 独立重复试验 ▪ Bernoulli 概型 |
随机变量 | 离散型随机变量 ▪ 连续型随机变量 ▪ 随机变量的函数 ▪ 随机向量 ▪ 边缘分布 ▪ 条件分布 ▪ 随机变量的独立性 ▪ 随机向量的函数 ▪ 极差分布 |
随机变量的特征 | 数学期望 ▪ 方差 ▪ 协方差 ▪ 相关系数 ▪ 矩 ▪ 母函数 ▪ 矩量母函数 ▪ 特征函数 ▪ 示性函数 ▪ 中位数 ▪ 众数 ▪ 峰度 ▪ 偏度 |
离散概率分布 | 二项分布 ▪ 几何分布 ▪ Pascal 分布 ▪ Poisson 分布 ▪ 超几何分布 ▪ 对数分布 ▪ 负二项分布 ▪ 多项分布 ▪ 多元超几何分布 |
连续概率分布 | 正态分布 ▪ 均匀分布 ▪ 指数分布 ▪ 对数正态分布 ▪ Γ 分布 ▪ χ 分布 ▪ β 分布 ▪ Rayleigh 分布 ▪ Cauchy 分布 ▪ Pareto 分布 ▪ Laplace 分布 ▪ Weibull 分布 ▪ Maxwell 分布律 ▪ 二元正态分布 ▪ 多元正态分布 |
统计三大分布 | χ² 分布 ▪ F 分布 ▪ t 分布 ▪ 非中心 χ² 分布 ▪ 非中心 F 分布 ▪ 非中心 t 分布 |
所在位置:数学(110)→ 概率论(11064)→ 概率分布(1106420) |