切線面是一種可展曲面,給定一條正則曲線,它在每一點處的切線的全體也構成一個直紋面,且是可展曲面,稱其為切線面。
假設有向量值函數確定的正則曲線 r ( u ) , u ∈ [ a , b ] {\displaystyle \boldsymbol{r}(u), u \in [a, b]} ,那麼它的切線全體構成的曲面方程為 r ( u , v ) = r ( u ) + v r ′ ( u ) . {\displaystyle \boldsymbol{r}(u, v) = \boldsymbol{r}(u) + v \boldsymbol{r}'(u).}
判斷一個可展曲面是否為切線面的方法是:它不是柱面和錐面即可。由於可展曲面 r ( u , v ) = a ( u ) + v b ( u ) {\displaystyle \boldsymbol{r}(u, v) = \boldsymbol{a}(u) + v \boldsymbol{b}(u)} 滿足 ( a ′ ( u ) , b ( u ) , b ′ ( u ) ) = 0. {\displaystyle (\boldsymbol{a}'(u), \boldsymbol{b}(u), \boldsymbol{b}'(u)) = 0.} 當 b ( u ) , b ′ ( u ) {\displaystyle \boldsymbol{b}(u), \boldsymbol{b}'(u)} 線性相關時顯然它是柱面。下設 b ( u ) , b ′ ( u ) {\displaystyle \boldsymbol{b}(u), \boldsymbol{b}'(u)} 線性無關,並設 a ′ ( u ) = λ ( u ) b ( u ) + μ ( u ) b ′ ( u ) . {\displaystyle \boldsymbol{a}'(u) = \lambda(u) \boldsymbol{b}(u) + \mu(u) \boldsymbol{b}'(u).} 令 a ^ ( u ) = a ( u ) − μ ( u ) b ( u ) . {\displaystyle \boldsymbol{\hat{a}}(u) = \boldsymbol{a}(u) - \mu(u) \boldsymbol{b}(u).} 那麼 a ^ ′ ( u ) = a ′ ( u ) − μ ′ ( u ) b ( u ) − μ ( u ) b ′ ( u ) = ( λ ( u ) − μ ′ ( u ) ) b ( u ) . {\displaystyle \begin{align} \boldsymbol{\hat{a}}'(u) &= \boldsymbol{a}'(u) - \mu'(u) \boldsymbol{b}(u) - \mu(u) \boldsymbol{b}'(u) \\ &= (\lambda(u) - \mu'(u)) \boldsymbol{b}(u). \end{align}} 當 a ^ ′ ( u ) = 0 {\displaystyle \boldsymbol{\hat{a}}'(u) = 0} 即 λ ( u ) = μ ′ ( u ) {\displaystyle \lambda(u) = \mu'(u)} 時, a ^ ( u ) {\displaystyle \boldsymbol{\hat{a}}(u)} 是常向量,不妨設其為 a 0 {\displaystyle \boldsymbol{a}_0} ,那麼 r ( u , v ) = a 0 + ( μ ( u ) + v ) b ( u ) . {\displaystyle \boldsymbol{r}(u, v) = \boldsymbol{a}_0 + (\mu(u)+v) \boldsymbol{b}(u).} 顯然是錐面。以下假設 a ^ ′ ( u ) ≠ 0 {\displaystyle \boldsymbol{\hat{a}}'(u) \ne 0} ,因此 r ( u , v ) = a ^ ( u ) + μ ( u ) + v λ ( u ) − μ ′ ( u ) a ^ ′ ( u ) . {\displaystyle \boldsymbol{r}(u, v) = \boldsymbol{\hat{a}}(u) + \dfrac{\mu(u)+v}{\lambda(u)-\mu'(u)} \boldsymbol{\hat{a}}'(u).} 是切線面。
978-7-0405-6950-6