空间几何中伪球面(pseudo-sphere)是由曳物线旋转得到的旋转面。由于它和球面有对偶的一些性质,故名伪球面。
定义[]
假设有平面内的曳物线,它有双曲参数表示 那么其围绕轴旋转一周形成的旋转曲面参数方程为

Gauss 曲率[]
伪球面是负常 Gauss 曲率的旋转曲面,其上任意一点都是双曲点;而球面是正常 Gauss 曲率的旋转曲面,其上任意一点都是(椭)圆点。
参考资料
- 彭家贵, 陈卿, 《微分几何(第2版)》, 高等教育出版社, 北京, 2011-11, ISBN
978-7-0405-6950-6
.
微分几何学(学科代码:1102745,GB/T 13745—2009) | |
---|---|
曲线论 | 曲线 ▪ 参数曲线 ▪ 正则曲线 ▪ 弧长参数 ▪ 曲率 ▪ 挠率 ▪ Frenet 标架 ▪ 向量积 ▪ 曲线论基本定理 ▪ 混合积 ▪ 渐屈线 ▪ 四顶点定理 ▪ 旋转指数定理 |
曲面局部理论 | 曲面 ▪ 曲面的第一基本形式 ▪ 曲面的第二基本形式 ▪ 曲面的第三基本形式 ▪ 法曲率 ▪ 主曲率 ▪ Gauss 曲率 ▪ Dupin 标线 ▪ Weingarten 变换 ▪ Riemann 度量 ▪ Gauss 方程和 Codazzi 方程 ▪ 曲面的正交标架 |
曲面整体理论 | Euler 示性数 ▪ Gauss-Bonnet 公式 ▪ 紧致曲面 ▪ 凸曲面 ▪ 完备曲面 ▪ 常 Gauss 曲率曲面(sine-Gordon 方程) ▪ Hilbert 定理 ▪ 常平均曲率曲面(Hopf 微分) ▪ 极小曲面 ▪ 稳定极小曲面 |
特殊类型曲面 | 直纹面(包括可展曲面,正螺面,切线面) ▪ 旋转面(包括柱面,锥面,伪球面,悬链面) ▪ 全脐点曲面 |
所在位置:数学(110)→ 几何学(11027)→ 微分几何学(1102745) |