在复变函数论中,亚纯函数是一种比解析函数条件要弱的复变函数。
定义[]
点集(或区域)上的一个复变函数,如果它除极点外无其它类型的奇点,我们就称该函数为上的一个亚纯函数。
整函数是全平面上的亚纯函数,解析函数也是亚纯函数的特例。
有理分式函数是全平面上的亚纯函数。非有理分式函数的亚纯函数称为超越亚纯函数。
Mittag-Leffler 定理[]
复平面上的一个亚纯函数可以用较为简单的亚纯函数——有理分式函数做展开。由此还有将整函数写为它的因子的乘积的定理——Weierstrass 定理。
参见[]
参考资料
- 钟玉泉, 《复变函数论(第五版)》, 高等教育出版社, 北京, 2021-03, ISBN
978-7-0405-5587-5
.
单复变函数论(学科代码:1104120,GB/T 13745—2009) | |
---|---|
复数理论 | 复平面 ▪ 复数列 ▪ 棣莫弗公式 ▪ 复球面 ▪ 欧拉公式 ▪ 复几何 |
复变函数以及微分理论 | 复变函数的极限 ▪ 复变函数的连续性 ▪ 复变函数的导数 ▪ 解析函数 ▪ 复指数函数 ▪ 复三角函数 ▪ 复双曲函数 ▪ 复指数系函数的几何形态 ▪ 多值函数 ▪ 辐角函数 ▪ 复对数函数 ▪ 复根式函数 ▪ 复幂以及一般幂函数 ▪ 复反三角函数 |
复变函数的积分理论 | 复变函数的积分 ▪ Cauchy 积分定理 ▪ 复变函数的不定积分 ▪ Cauchy 积分公式 ▪ Liouville 定理 ▪ Cauchy 型积分 |
复变函数的级数理论 | 复数项级数 ▪ 复函数项级数、复幂级数 ▪ 解析函数的泰勒展式 ▪ 解析函数的零点性质 ▪ 解析函数的洛朗展式 ▪ 解析函数的孤立奇点 ▪ 解析函数的无穷远点性质 ▪ 留数理论 ▪ 留数的应用 ▪ 对数留数 |
复变函数的几何理论 | 解析变换 ▪ 分式线性变换 ▪ 共形映射 ▪ 解析开拓 ▪ 完全解析函数 ▪ 整函数 ▪ 亚纯函数 |
所在位置:数学(110)→ 函数论(11041)→ 单复变函数论(1104120) |