在解析几何中,二重外积是向量的一个三元代数运算。
设有向量 a → , b → , c → {\displaystyle \vec{a}, \vec{b}, \vec{c}} ,我们称 ( a → × b → ) × c → {\displaystyle (\vec{a} \times \vec{b}) \times \vec{c}} 为二重外积,该向量位于 a → , b → {\displaystyle \vec{a}, \vec{b}} 所确定的平面内,实际上有如下二重外积公式: ( a → × b → ) × c → = ( c → ⋅ a → ) b → − ( c → ⋅ b → ) a → . {\displaystyle (\vec{a} \times \vec{b}) \times \vec{c} = (\vec{c} \cdot \vec{a}) \vec{b} - (\vec{c} \cdot \vec{b})\vec{a}.} 由此亦可得 a → × ( b → × c → ) = ( a → ⋅ c → ) b → − ( a → ⋅ b → ) c → . {\displaystyle \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b})\vec{c}.}
这个运算不具备结合性,即通常 ( a → × b → ) × c → ≠ a → × ( b → × c → ) {\displaystyle (\vec{a} \times \vec{b}) \times \vec{c} \ne \vec{a} \times (\vec{b} \times \vec{c})}
对于任意向量 a → , b → , c → {\displaystyle \vec{a}, \vec{b}, \vec{c}} ,总成立如下等式 a → × ( b → × c → ) + b → × ( c → × a → ) + c → × ( a → × b → ) = 0 → . {\displaystyle \vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}.}
三重外积是一个四元代数运算,由于二重外积没有结合性,因此有两种形式的三重外积。
设几何空间中有四个向量 a → , b → , c → , d → {\displaystyle \vec{a},\vec{b},\vec{c},\vec{d}} ,则有如下公式计算第一类(非对称)的三重外积 a → × [ b → × ( c → × d → ) ] = ( b → ⋅ d → ) ( a → × c → ) − ( b → ⋅ c → ) ( a → × d → ) . {\displaystyle \vec{a} \times [\vec{b} \times (\vec{c} \times \vec{d})] = (\vec{b} \cdot \vec{d}) (\vec{a} \times \vec{c}) - (\vec{b} \cdot \vec{c}) (\vec{a} \times \vec{d}).}
设几何空间中有四个向量 a → , b → , c → , d → {\displaystyle \vec{a},\vec{b},\vec{c},\vec{d}} ,则有如下公式计算第二类(对称)的三重外积 ( a → × b → ) × ( c → × d → ) = ( a → , b → , d → ) c → − ( a → , b → , c → ) d → = ( a → , c → , d → ) b → − ( b → , c → , d → ) a → . {\displaystyle \begin{align} (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) & = (\vec{a}, \vec{b}, \vec{d}) \vec{c} - (\vec{a}, \vec{b}, \vec{c}) \vec{d} \\ & = (\vec{a}, \vec{c}, \vec{d}) \vec{b} - (\vec{b}, \vec{c}, \vec{d}) \vec{a}. \end{align}}