Math Wiki
No edit summary
(Adding categories)
 
(11 intermediate revisions by 6 users not shown)
Line 1: Line 1:
The Pythagorean Identity is a [[trigonometry|trigonometric]] identity based on the application of the [[Pythagorean Theorem]] to the [[unit circle|unit triangle]]
+
The '''Pythagorean trigonometric identity''' is a [[trigonometry|trigonometric]] identity based on the application of the [[Pythagorean Theorem]] to the [[unit circle|unit triangle]].
   
 
The fundamental identity is:
 
The fundamental identity is:
  +
{{Identity
 
|subtitle = <math>\sin^2(\theta)+\cos^2(\theta)=1</math> , for all <math>\theta\in\R</math>
  +
|{{Proof
  +
|reqs = [[Pythagorean theorem]]: <math>a^2+b^2=c^2</math>
  +
|Assume a [[point]] <math>C</math> in the [[unit circle]] centered at the origin forming an angle <math>\theta</math> . Let <math>B</math> be a point on the [[x-axis]] corresponding to the [[x-coordinate]] of <math>C</math> . Let <math>A</math> be the origin. A [[right triangle]] would be formed: <math>\triangle ABC</math> . The length of <math>\overline{AB}</math> would be equal to <math>\cos(\theta)</math> and the length of <math>\overline{BC}</math> would be equal to <math>\sin(\theta)</math> . The length of <math>\overline{AC}</math> is 1 (since we're using the unit circle). Using the [[Pythagorean theorem]], we have: <math>\sin^2(\theta)+\cos^2(\theta)=1</math>
  +
}}
  +
}}
   
 
==Implications==
<math>\sin^2 \theta + \cos^2 \theta = 1</math>
 
 
== Implications ==
 
 
Due to this fundamental relationship, other Pythagorean Identities emerge through the use of:
 
Due to this fundamental relationship, other Pythagorean Identities emerge through the use of:
* the complimentary and cofunction properties
+
*the complimentary and cofunction properties
* the reciprocal functions
+
*the reciprocal functions
* the quotient identities
+
*the quotient identities
   
 
The other identities include:
 
The other identities include:
  +
{{Identity
 
<math>\tan^2 + 1 = \sec^2 \theta</math>
+
|subtitle = <math>\tan^2(\theta)+1=\sec^2(\theta)</math>
  +
|{{Proof|
 
<math>\cot^2 + 1 = \csc^2 \theta</math>
+
:<math>\sin^2(\theta)+\cos^2(\theta)=1</math>
  +
:<math>\frac{\sin^2(\theta)}{\cos^2(\theta)}+\frac{\cos^2(\theta)}{\cos^2(\theta)}=\frac{1}{\cos^2(\theta)}</math>
  +
:<math>\tan^2(\theta)+1=\sec^2(\theta)</math>
  +
}}
  +
}}
  +
{{Identity
  +
|subtitle = <math>1+\cot^2(\theta)=\csc^2(\theta)</math>
  +
|{{Proof|
  +
:<math>\sin^2(\theta)+\cos^2(\theta)=1</math>
  +
:<math>\frac{\sin^2(\theta)}{\sin^2(\theta)}+\frac{\cos^2(\theta)}{\sin^2(\theta)}=\frac{1}{\sin^2(\theta)}</math>
  +
:<math>1+\cot^2(\theta)=\csc^2(\theta)</math>
  +
}}
  +
}}
  +
[[Category:Trigonometric identities]]
  +
[[Category:Trigonometry]]
  +
[[Category:Triangles]]
  +
[[Category:Geometry]]
  +
[[Category:Mathematics]]
  +
[[Category:Articles containing proofs]]

Latest revision as of 23:42, 28 June 2018

The Pythagorean trigonometric identity is a trigonometric identity based on the application of the Pythagorean Theorem to the unit triangle.

The fundamental identity is:

Identity: , for all
Theorem. '
Prerequisites:
Pythagorean theorem:


Proof. Assume a point in the unit circle centered at the origin forming an angle . Let be a point on the x-axis corresponding to the x-coordinate of . Let be the origin. A right triangle would be formed: . The length of would be equal to and the length of would be equal to . The length of is 1 (since we're using the unit circle). Using the Pythagorean theorem, we have:
Tombstone

Implications

Due to this fundamental relationship, other Pythagorean Identities emerge through the use of:

  • the complimentary and cofunction properties
  • the reciprocal functions
  • the quotient identities

The other identities include:

Identity:
Theorem. '
Proof.

Tombstone
Identity:
Theorem. '
Proof.

Tombstone