d d x ( x r ) = r x r − 1 {\displaystyle \frac{d}{dx}(x^r)=rx^{r-1}} , for any real number r {\displaystyle r} .
Let f ( x ) = x r {\displaystyle f(x)=x^r} . Then:
Prerequisite: d d x ( ln ( u ) ) = u ′ u {\displaystyle \frac{d}{dx}(\ln(u))=\frac{u'}{u}}
Let y = x r {\displaystyle y=x^r} . Then: