Sign In
Register
Math Wiki
Explore
Main Page
Discuss
All Pages
Community
Interactive Maps
Recent Blog Posts
Browse content
Category list
Mathematics
Project pages
most_popular
most_visited
1 (number)
Pascal's triangle
Integral
Mathematics
2 (number)
Megagon
Ordinal Number
highest_ratings
newly_changed
Long multiplication
Nonanonacontanonactanonaliagon
Product rule
12 (number)
9 (number)
6 (number)
Super Metallic Means
Community
Community portal
Forums
Chat
top_users
Candypretty5
Jasperljh16
ComplexFun15
Administrators
Sign In
Don't have an account?
Register
Sign In
Menu
Explore
More
History
Advertisement
Skip to content
Math Wiki
1,422
pages
Explore
Main Page
Discuss
All Pages
Community
Interactive Maps
Recent Blog Posts
Browse content
Category list
Mathematics
Project pages
most_popular
most_visited
1 (number)
Pascal's triangle
Integral
Mathematics
2 (number)
Megagon
Ordinal Number
highest_ratings
newly_changed
Long multiplication
Nonanonacontanonactanonaliagon
Product rule
12 (number)
9 (number)
6 (number)
Super Metallic Means
Community
Community portal
Forums
Chat
top_users
Candypretty5
Jasperljh16
ComplexFun15
Administrators
in:
Trigonometry
,
Geometry
,
Identities
,
and
3 more
Trigonometric identities
Precalculus
Tables
List of trigonometric identities
Sign in to edit
History
Purge
Talk (0)
Fundamental Identities
[
]
Quotient and reciprocal identities
tan
(
x
)
=
sin
(
x
)
cos
(
x
)
{\displaystyle \tan(x)=\frac{\sin(x)}{\cos(x)}}
cot
(
x
)
=
cos
(
x
)
sin
(
x
)
=
csc
(
x
)
sec
(
x
)
=
1
tan
(
x
)
{\displaystyle \cot(x)=\frac{\cos(x)}{\sin(x)}=\frac{\csc(x)}{\sec(x)}=\frac{1}{\tan(x)}}
sec
θ
=
1
cos
(
x
)
{\displaystyle \sec\theta=\frac{1}{\cos(x)}}
csc
θ
=
1
sin
(
x
)
{\displaystyle \csc\theta=\frac{1}{\sin(x)}}
Pythagorean identities
sin
2
(
x
)
+
cos
2
(
x
)
=
1
{\displaystyle \sin^2(x)+\cos^2(x)=1}
tan
2
(
x
)
+
1
=
sec
2
(
x
)
{\displaystyle \tan^2(x)+1=\sec^2(x)}
1
+
cot
2
(
x
)
=
csc
2
(
x
)
{\displaystyle 1+ \cot^2(x)=\csc^2(x) }
Angle sum and difference identities
sin
(
x
±
y
)
=
sin
(
x
)
cos
(
y
)
±
sin
(
y
)
cos
(
x
)
{\displaystyle \sin(x\pm y)=\sin(x)\cos(y)\pm\sin(y)\cos(x)}
cos
(
x
±
y
)
=
cos
(
x
)
cos
(
y
)
∓
sin
(
x
)
sin
(
y
)
{\displaystyle \cos(x\pm y)=\cos(x)\cos(y)\mp\sin(x)\sin(y)}
tan
(
x
±
y
)
=
tan
(
x
)
±
tan
(
y
)
1
∓
tan
(
x
)
tan
(
y
)
{\displaystyle \tan(x\pm y)=\frac{\tan(x)\pm\tan(y)}{1\mp\tan(x)\tan(y)}}
Double-angle identities
sin
(
2
x
)
=
2
sin
(
x
)
cos
(
x
)
{\displaystyle \sin(2x)=2\sin(x)\cos(x)}
cos
(
2
x
)
=
cos
2
(
x
)
−
sin
2
(
x
)
=
2
cos
2
(
x
)
−
1
=
1
−
2
sin
2
(
x
)
{\displaystyle \cos(2x)=\cos^2(x)-\sin^2(x)=2\cos^2(x)-1=1-2\sin^2(x)}
tan
(
2
x
)
=
2
tan
(
x
)
1
−
tan
2
(
x
)
{\displaystyle \tan(2x)=\frac{2\tan(x)}{1-\tan^2(x)}}
Half-angle identities
sin
(
x
2
)
=
±
1
−
cos
(
x
)
2
{\displaystyle \sin\left(\frac{x}{2}\right)=\pm\sqrt{\frac{1-\cos(x)}{2}}}
cos
(
x
2
)
=
±
1
+
cos
(
x
)
2
{\displaystyle \cos\left(\frac{x}{2}\right)=\pm\sqrt{\frac{1+\cos(x)}{2}}}
tan
(
x
2
)
=
±
1
−
cos
(
x
)
1
+
cos
(
x
)
=
sin
(
x
)
1
+
cos
(
x
)
=
1
−
cos
(
x
)
sin
(
x
)
{\displaystyle \tan\left(\frac{x}{2}\right)=\pm\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}=\frac{\sin(x)}{1+\cos(x)}=\frac{1-\cos(x)}{\sin(x)}}
Advertisement