An example of limit
If a variable
x
{\displaystyle x}
takes values which are more and more close to a finite number
a
{\displaystyle a}
, then we say that
x
{\displaystyle x}
approaches
a
{\displaystyle a}
written as
x
→
a
{\displaystyle x\to a}
).
If values of
x
{\displaystyle x}
come closer to
a
{\displaystyle a}
but are always greater than
a
{\displaystyle a}
, then we say that
x
{\displaystyle x}
approaches
a
{\displaystyle a}
form right (
x
→
a
+
{\displaystyle x\to a^+}
).
If values of
x
{\displaystyle x}
come closer to
a
{\displaystyle a}
but are always less than
a
{\displaystyle a}
, then
x
{\displaystyle x}
approaches
a
{\displaystyle a}
from left (
x
→
a
−
{\displaystyle x\to a^-}
) .
The concept of a limit is essentially what separates the field of calculus , and analysis in general, from other fields of mathematics such as geometry or algebra .
The concept of a limit may apply to:
Examples [ ]
If
x
→
2
{\displaystyle x\to2}
, then
x
{\displaystyle x}
can approach to '2' from two sides:
From right side: In notation we write
x
→
2
+
{\displaystyle x\to2^+}
means
x
{\displaystyle x}
is coming closer to '2' from right i.e. it is more than '2'.
x
=
2.1
x
=
2.01
x
=
2.0001
⋮
{\displaystyle \begin{align}&x=2.1\\&x=2.01\\&x=2.0001\\&\vdots\end{align}}
From left side: In notation we write
x
→
2
−
{\displaystyle x\to2^-}
mean
x
{\displaystyle x}
is coming closer to 2 from left i.e. it is less than '2'.
x
=
1.9
x
=
1.99
x
=
1.9999
⋮
{\displaystyle \begin{align}&x=1.9\\&x=1.99\\&x=1.9999\\&\vdots\end{align}}
Meaning of a limiting value [ ]
Let
f
(
x
)
{\displaystyle f(x)}
be function of
x
{\displaystyle x}
. If the expression
f
(
x
)
{\displaystyle f(x)}
comes close and stays close to
L
{\displaystyle L}
as
x
{\displaystyle x}
approaches
a
{\displaystyle a}
then we say that
L
{\displaystyle L}
is the limit of
f
(
x
)
{\displaystyle f(x)}
as
x
{\displaystyle x}
approaches
a
{\displaystyle a}
. The value
x
{\displaystyle x}
converges to is called the limit point.
In notation, it is written as
lim
x
→
a
f
(
x
)
=
L
{\displaystyle \lim_{x\to a}f(x)=L}
.
Right hand limit [ ]
If
f
(
x
)
{\displaystyle f(x)}
approaches
L
1
{\displaystyle L_1}
as
x
{\displaystyle x}
approaches
a
{\displaystyle a}
from the right, then
L
1
{\displaystyle L_1}
is called as the right hand limit of
f
(
x
)
{\displaystyle f(x)}
.
Right hand limit can be expressed in two ways:-
lim
x
→
a
+
f
(
x
)
=
L
1
{\displaystyle \lim_{x\to a^+}f(x)=L_1}
lim
h
→
0
f
(
a
+
h
)
Put
x
=
a
+
h
in the above result
{\displaystyle \lim_{h\to0}f(a+h)\text{ Put }x=a+h\text{ in the above result}}
Left hand limit [ ]
If
f
(
x
)
{\displaystyle f(x)}
approaches
a
{\displaystyle a}
from the left, then
L
2
{\displaystyle L_2}
is called the left hand limit of
f
(
x
)
{\displaystyle f(x)}
. The left hand limit can be expressed in two ways:-
lim
x
→
a
−
f
(
x
)
=
L
2
{\displaystyle \lim_{x\to a^-}f(x)=L_2}
lim
h
→
0
f
(
a
−
h
)
Put
x
=
a
−
h
in the above result
{\displaystyle \lim_{h\to0}f(a-h)\text{ Put }x=a-h\text{ in the above result}}
Note that
h
{\displaystyle h}
is a positive real number, that we let approach 0. .
Existence of limit [ ]
For existence of limit at
x
=
a
{\displaystyle x=a}
⇒
L
H
L
=
R
H
L
⇒
L
1
=
L
2
⇒
lim
x
→
a
−
f
(
x
)
=
lim
x
→
a
+
f
(
x
)
{\displaystyle \begin{align}&\Rightarrow LHL=RHL\\
&\Rightarrow L_1=L_2\\
&\Rightarrow\lim_{x\to a^-}f(x)=\lim_{x\to a^+}f(x)\end{align}}
Illustrating the concept [ ]
If
f
(
x
)
=
x
2
−
4
x
−
2
{\displaystyle f(x)=\frac{x^2-4}{x-2}}
, then evaluate
lim
x
→
2
f
(
x
)
{\displaystyle \lim_{x\to2}f(x)}
.
L.H.L. =
lim
x
→
2
−
x
2
−
4
x
−
2
{\displaystyle \lim_{x\to2^-}\frac{x^2-4}{x-2}}
i.e.
x
{\displaystyle x}
is coming closer to 2 but it is less than '2'. So, observe the situation in table below:
x
{\displaystyle x}
2
−
x
{\displaystyle 2-x}
f
(
x
)
{\displaystyle f(x)}
1.9
0.1
3.9
1.99
0.01
3.99
1.999
0.001
3.999
⋮
{\displaystyle \vdots}
⋮
{\displaystyle \vdots}
⋮
{\displaystyle \vdots}
Coming closer to 2 but less than 2
Coming closer to 4 but less than 4
Infinity in limits [ ]
Limits can approach infinity :
lim
x
→
∞
2
x
x
−
1
=
2
{\displaystyle \lim_{x \to \infty} \frac {2x}{x-1} = 2}
If a limit approaching infinity is a real value, then as the variable gets larger and larger, the limit converges .
Limits can also be equal infinity :
lim
x
→
0
−
csc
2
(
x
)
=
−
∞
{\displaystyle \lim_{x\to0}-\csc^2(x) = -\infty}
On a graph, an infinite limit would appear to skyrocket or plummet to the top and bottom edges of the graph (asymptote ).
Calculating limits [ ]
Direct substitution [ ]
If the function is continuous, limits can be evaluated by directly substituting the variable with the value it approaches. For example, because the cubic is continuous we have
lim
x
→
6
x
3
=
(
6
)
3
=
216
{\displaystyle \lim_{x \to 6}{x^3} = (6)^3 = 216}
In the limit below, direct substitution will give a false answer.
lim
x
→
π
e
c
o
t
(
x
)
≠
e
c
o
t
(
π
)
lim
x
→
π
−
e
c
o
t
(
x
)
=
0
lim
x
→
π
+
e
c
o
t
(
x
)
=
∞
{\displaystyle \begin{align}
\lim_{x \to \pi} e^{cot(x)} & \neq e^{cot(\pi)} \\
\lim_{x \to \pi^-} e^{cot(x)} & = 0 \\
\lim_{x \to \pi^+} e^{cot(x)} & = \infty
\end{align}}
Graphing will show that
e
c
o
t
(
x
)
{\displaystyle e^{cot(x)}}
is not continuous at
x
=
π
{\displaystyle x = \pi}
, and that therefore
lim
x
→
π
e
c
o
t
(
x
)
{\displaystyle \lim_{x \to \pi} e^{cot(x)}}
does not exist.
When a discontinuous function is improperly computed using direct substitution, one of the following peculiar results may be concluded:
0
0
∞
∞
0
∗
∞
0
0
∞
0
1
∞
∞
−
∞
{\displaystyle \frac 00 \qquad \frac \infty\infty \qquad 0*\infty \qquad 0^0 \qquad \infty^0 \qquad 1^\infty \qquad \infty-\infty
}
The indeterminate forms do not provide enough information to identify the real limit.
The limits below are unequal. If they are directly substituted, they reach an indeterminate form and cannot be distinguished.
lim
x
→
0
x
x
=
1
lim
x
→
0
x
2
x
=
0
lim
x
→
0
x
x
≠
lim
x
→
0
x
2
x
(
0
)
(
0
)
≠
(
0
)
2
(
0
)
0
0
≠
0
0
{\displaystyle \begin{align}
\lim_{x \to 0} \frac xx & = 1 \\
\lim_{x \to 0} \frac {x^2}x & = 0 \\
\lim_{x \to 0} \frac xx & \neq \lim_{x \to 0} \frac {x^2}x \\
\frac {(0)}{(0)} & \neq \frac {(0)^2}{(0)} \\
\frac 00 & \neq \frac 00
\end{align}}
There are some techniques to deal with limits with indeterminate form:
Algebraic manipulation [ ]
Discontinuities can be eliminated through algebraic manipulation:
lim
x
→
−
1
x
2
−
1
x
+
1
=
lim
x
→
−
1
(
x
+
1
)
(
x
−
1
)
x
+
1
=
lim
x
→
−
1
x
−
1
=
−
2
{\displaystyle \lim _{x\to -1}{\frac {x^{2}-1}{x+1}}=\lim _{x\to -1}{\frac {(x+1)(x-1)}{x+1}}=\lim _{x\to -1}x-1=-2}
Knowing the well-known limits [ ]
Here're some well-known limits:
lim
x
→
0
sin
(
x
)
x
=
1
{\displaystyle \lim_{x\to0}\frac{\sin(x)}{x}=1}
lim
x
→
0
e
x
−
1
x
=
1
{\displaystyle \lim_{x \to 0}\frac{e^x - 1}{x} = 1}
lim
x
→
∞
(
1
+
1
x
)
x
=
e
{\displaystyle \lim_{x \to \infty}(1 + \frac{1}{x})^x = e}
L'Hôpital's rule states that if
f
(
x
)
=
g
(
x
)
=
0
{\displaystyle f(x)=g(x)=0}
,
d
d
x
f
(
x
)
{\displaystyle \frac{d}{dx}f(x)}
and
d
d
x
g
(
x
)
{\displaystyle \frac{d}{dx}g(x)}
exist then:
lim
x
→
a
f
(
x
)
g
(
x
)
=
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
{\displaystyle \lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}}
For example, to compute
lim
x
→
0
e
x
−
cos
(
x
)
x
{\displaystyle \lim _{x\to 0}{\frac {e^{x}-\cos(x)}{x}}}
, first plug 0 to the numerator and denominator of the limit:
numerator
=
e
0
−
cos
(
0
)
=
1
−
1
=
0
{\displaystyle =e^{0}-\cos(0)=1-1=0}
denominator
=
0
{\displaystyle = 0}
When x is 0, both the numerator and denominator are 0, meaning that the L'Hôpital's rule can be used on both of them:
lim
x
→
0
e
x
−
cos
(
x
)
x
=
lim
x
→
0
d
d
x
(
e
x
−
cos
(
x
)
)
d
d
x
(
x
)
=
lim
x
→
0
e
x
+
sin
(
x
)
=
e
0
+
sin
(
0
)
=
1
{\displaystyle \lim _{x\to 0}{\frac {e^{x}-\cos(x)}{x}}=\lim _{x\to 0}{\frac {{\frac {d}{dx}}(e^{x}-\cos(x))}{{\frac {d}{dx}}(x)}}=\lim _{x\to 0}e^{x}+\sin(x)=e^{0}+\sin(0)=1}