Math Wiki

Fig. 1 - A triangle.

In trigonometry, the law of tangents[1] is a statement about the relationship between the lengths of the three sides of a triangle and the tangents of the angles.

In Figure 1, a, b, and c are the lengths of the three sides of the triangle, and α, β, and γ are the angles opposite those three respective sides. The law of tangents states that

The law of tangents, although not as commonly known as the law of sines or the law of cosines, is just as useful, and can be used in any case where two sides and an angle, or two angles and a side are known.

The law of tangents used for spherical triangles was discovered and proven by the 13th century Persian mathematician, Nasir al-Din al-Tusi, who also discovered and proved the law of sines for plane triangles.


To prove the law of tangents we can start with the law of sines:


so that

It follows that

Using the trigonometric identity

we get

As an alternative to using the identity for the sum or difference of two sines, one may cite the trigonometric identity

(see tangent half-angle formula).

See also


  1. See Eli Maor, Trigonometric Delights, Princeton University Press, 2002.

ar:قانون الظل ca:Teorema de la tangent cs:Tangentová věta eo:Leĝo de tangentoj nl:Tangensregel km:ទ្រឹស្តីបទតង់សង់ pl:Twierdzenie tangensów sl:Tangensni izrek ta:தாஞ்சன்களின் விதி uk:Теорема тангенсів