Integration by trigonometric substitution is a technique of integration that involves substituting some function of x for a trigonometric function .
As a general rule, when taking an antiderivative of a function in the form
a
2
−
x
2
{\displaystyle \sqrt{a^2-x^2}}
, the substitution
x
=
a
sin
(
u
)
{\displaystyle x=a\sin(u)}
is usually the best option. For
a
2
+
x
2
{\displaystyle \sqrt{a^2+x^2}}
and
a
2
−
x
2
{\displaystyle \sqrt{a^2-x^2}}
, the substitutions
x
=
a
tan
(
u
)
{\displaystyle x=a\tan(u)}
and
x
=
a
sec
(
u
)
{\displaystyle x=a\sec(u)}
(respectively) are usually the best options.
Examples [ ]
This technique can be used when functions would be otherwise difficult to integrate. One of the most well-known examples is
∫
d
x
1
−
x
2
{\displaystyle \int\dfrac{dx}{\sqrt{1-x^2}}}
Here, we can use the substitution
x
=
sin
(
u
)
,
d
x
=
cos
(
u
)
d
u
{\displaystyle x=\sin(u),\ dx=\cos(u)du}
to get
∫
cos
(
u
)
1
−
sin
2
(
u
)
d
u
=
∫
cos
(
u
)
cos
2
(
u
)
d
u
=
∫
d
u
=
u
x
=
sin
(
u
)
⇒
arcsin
(
x
)
=
u
{\displaystyle \begin{align}&\int\dfrac{\cos(u)}{\sqrt{1-\sin^2(u)}}du=\int\dfrac{\cos(u)}{\sqrt{\cos^2(u)}}du=\int du=u\\&x=\sin(u)\Rightarrow\arcsin(x)=u\end{align}}
Therefore:
∫
d
x
1
−
x
2
=
arcsin
(
x
)
{\displaystyle \int\dfrac{dx}{\sqrt{1-x^2}}=\arcsin(x)}
A second example:
∫
d
x
x
2
4
+
x
2
=
∫
d
x
x
2
2
2
+
x
2
{\displaystyle \int\dfrac{dx}{x^2\sqrt{4+x^2}}=\int\dfrac{dx}{x^2\sqrt{2^2+x^2}}}
Here, we can use the substitution
x
=
2
tan
(
u
)
,
d
x
=
2
sec
2
(
u
)
d
u
{\displaystyle x=2\tan(u),\ dx=2\sec^2(u)du}
to get
∫
2
sec
2
(
u
)
(
2
tan
(
u
)
)
2
4
(
1
+
tan
2
(
u
)
)
d
u
=
∫
2
sec
2
(
u
)
8
tan
2
(
u
)
1
+
tan
2
(
u
)
d
u
=
1
4
∫
sec
2
(
u
)
tan
2
(
u
)
1
+
tan
2
(
u
)
d
u
{\displaystyle \begin{align}\int\dfrac{2\sec^2(u)}{(2\tan(u))^2\sqrt{4(1+\tan^2(u))}}du&=\int\dfrac{2\sec^2(u)}{8\tan^2(u)\sqrt{1+\tan^2(u)}}du\\&=\frac14\int\dfrac{\sec^2(u)}{\tan^2(u)\sqrt{1+\tan^2(u)}}du\end{align}}
By using the trigonometric identity
1
+
tan
2
(
u
)
=
sec
2
(
u
)
{\displaystyle 1+\tan^2(u)=\sec^2(u)}
, we get
1
4
∫
sec
2
(
u
)
tan
2
(
u
)
sec
2
(
u
)
d
u
=
1
4
∫
sec
2
(
u
)
tan
2
(
u
)
sec
(
u
)
d
u
=
1
4
∫
sec
(
u
)
tan
2
(
u
)
d
u
=
1
4
∫
cos
(
u
)
sin
2
(
u
)
d
u
{\displaystyle \begin{align}\frac14\int\dfrac{\sec^2(u)}{\tan^2(u)\sqrt{\sec^2(u)}}du&=\frac14\int\dfrac{\sec^2(u)}{\tan^2(u)\sec(u)}du\\&=\frac14\int\frac{\sec(u)}{\tan^2(u)}du=\frac14\int\frac{\cos(u)}{\sin^2(u)}du\end{align}}
Which evaluates to
−
1
sin
(
u
)
{\displaystyle -\frac{1}{\sin(u)}}
by using u-substitution . Since
x
=
2
tan
(
u
)
⇒
arctan
(
x
2
)
=
u
{\displaystyle x=2\tan(u)\Rightarrow\arctan\left(\tfrac{x}{2}\right)=u}
we can say that
−
1
4
sin
(
u
)
=
−
1
4
sin
(
arctan
(
x
2
)
)
=
−
1
4
x
4
+
x
2
=
−
4
+
x
2
4
x
{\displaystyle -\frac{1}{4\sin(u)}=-\frac{1}{4\sin\left(\arctan\left(\tfrac{x}{2}\right)\right)}
=-\frac{1}{\dfrac{4x}{\sqrt{4+x^2}}}=-\frac{\sqrt{4+x^2}}{4x}}
Therefore:
∫
d
x
x
2
4
+
x
2
=
−
4
+
x
2
4
x
+
C
{\displaystyle \int\dfrac{dx}{x^2\sqrt{4+x^2}}=-\frac{\sqrt{4+x^2}}{4x}+C}