watch 01:36
We're Getting Mutants in the MCU - The Loop
Do you like this video?
Play Sound
An eigenvector of an n×n matrix is a vector that does not change its direction under a linear transformation; that is, if is a non-zero vector and is a scalar (the eigenvalue of ),
Eigenvalues can be real or complex. The product of the eigenvalues is the determinant of the matrix, and the linear span of an eigenvector is called an eigenspace.
Computing eigenvectors and eigenvalues
The eigenvalues (represented by
) will be scalars such thatThis equation is known as the characteristic polynomial. The eigenvectors corresponding to the eigenvalue will be the non-trivial solutions to
Example
Given the matrix
The characteristic polynomial will be
The eigenvalues of
will be -1 and 3.