The differential element or just differential of a quantity refers to an infinitesimal change in said quantity, and is defined as the limit of a change in quantity as the change approaches zero.
d
x
=
lim
Δ
x
→
0
Δ
x
{\displaystyle dx=\lim_{\Delta x\to0}\Delta x}
Differentials are useful in the definitions of both derivatives and integrals ; for example, the derivative of
y
{\displaystyle y}
with respect to
x
{\displaystyle x}
is defined as
d
y
d
x
=
lim
Δ
x
→
0
Δ
y
Δ
x
{\displaystyle \frac{dy}{dx}=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}}
When transforming coordinates , the value of a differential element is computed using the determinant of the Jacobian matrix .
∏
i
=
1
n
d
x
i
=
∂
(
x
1
,
…
,
x
n
)
∂
(
u
1
,
…
,
u
n
)
∏
i
=
1
n
d
u
i
=
|
∂
x
1
∂
u
1
⋯
∂
x
n
∂
u
1
⋮
⋱
⋮
∂
x
1
∂
u
n
⋯
∂
x
n
∂
u
n
|
∏
i
=
1
n
d
u
i
{\displaystyle \prod_{i=1}^n dx_i=\frac{\part(x_1,\ldots,x_n)}{\part(u_1,\ldots,u_n)}\prod_{i=1}^n du_i=
\begin{vmatrix}
\dfrac{\part x_1}{\part u_1}&\cdots&\dfrac{\part x_n}{\part u_1}\\
\vdots&\ddots&\vdots\\
\dfrac{\part x_1}{\part u_n}&\cdots&\dfrac{\part x_n}{\part u_n}
\end{vmatrix}\prod_{i=1}^n du_i}
Formulae for differential elements [ ]
Line elements [ ]
d
s
=
‖
r
′
→
‖
d
t
=
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
+
(
d
z
d
t
)
2
d
t
{\displaystyle ds=\|\vec{r'}\|dt=\sqrt{\left(\tfrac{dx}{dt}\right)^2+\left(\tfrac{dy}{dt}\right)^2 + \left(\tfrac{dz}{dt}\right)^2}dt}
(scalar line element )
d
r
→
=
r
′
→
d
t
=
r
′
→
‖
r
′
→
‖
d
s
{\displaystyle d\vec r=\vec{r'}dt=\frac{\vec{r'}}{\|\vec{r'}\|}ds}
(tangential vector element )
d
n
→
=
T
→
′
‖
T
→
′
‖
d
s
{\displaystyle d\vec n=\frac{\vec T'}{\left\|\vec T'\right\|}ds}
(normal vector element )
Area elements [ ]
Surface elements [ ]
d
S
=
‖
r
→
u
×
r
→
v
‖
d
A
{\displaystyle dS=\big\|\vec{r}_u\times\vec{r}_v\big\|dA}
(scalar surface element )
(
r
→
u
×
r
→
v
)
d
A
=
r
→
u
×
r
→
v
‖
r
→
u
×
r
→
v
‖
d
S
{\displaystyle (\vec{r}_u\times\vec{r}_v)dA=\frac{\vec{r}_u\times\vec{r}_v}{\big\|\vec{r}_u\times\vec{r}_v\big\|}dS}
(normal vector surface element)
Volume elements [ ]
d
V
=
d
x
⋅
d
y
⋅
d
z
{\displaystyle dV=dx\cdot dy\cdot dz}
(three-dimensional Cartesian coordinates )
d
V
=
r
⋅
d
r
⋅
d
θ
⋅
d
z
{\displaystyle dV=r\cdot dr\cdot d\theta\cdot dz}
(cylindrical coordinates )
d
V
=
ρ
2
sin
(
ϕ
)
d
ρ
⋅
d
θ
⋅
d
ϕ
{\displaystyle dV=\rho^2\sin(\phi)d\rho\cdot d\theta\cdot d\phi}
(spherical coordinates )