Math Wiki

Cosine is a trigonometric ratio. In a right triangle with an angle ,

is the side of the triangle that is part of angle , and is the side opposite the right angle.


Properties[]

The cosine of an angle is the x-coordinate of the point of intersection of said angle and a unit circle.

As a result of Euler's formula, the cosine function can also be represented as

The reciprocal of cosine is secant (abbreviated as ), while its inverse is or . Note that sine is not being raised to the power of -1; this is an inverse function, not a reciprocal.

The derivative of is , while its antiderivative is .

The trigonometric addition/subtraction identiy of cosine is:

The square of cosine:

Imaginary number:

Cosine is an even function:

Limits[]

Power series[]

More formally defined, the cosine is defined by the power series, which is convergent for all ,

Where denotes the factorial of n. From this, the above properties may be derived.

History[]

The cosine function was first discovered in medieval Islamic mathematics.[1] In the early 9th century, Persian mathematician Muhammad ibn Mūsā al-Khwārizmī (c. 780-850) produced a table for the cosine function.[2]

Something equivalent to the spherical law of cosines was used (but not stated in general) by Al-Khwārizmī (9th century) and Al-Battānī (9th century).[3] The law of cosines was also used (but not stated in general) for the solution of triangles, in the course of solving astronomical problems by al-Bīrūnī (11th century).[4]

The 13th century Persian mathematician Naṣīr al-Dīn al-Ṭūsī, in his Kitāb al-Shakl al-qattāʴ (Book on the Complete Quadrilateral, c. 1250), gave a method for finding the third side of a general scalene triangle given two sides and the included angle by dropping a perpendicular from the vertex of one of the unknown angles to the opposite base, reducing the problem to solving a right-angled triangle by the Pythagorean theorem. If written out using modern mathematical notation, the resulting relation can be algebraically manipulated into the modern law of cosines.[5]

Jamshīd al-Kāshī (1393-1449) later provided the first explicit statement of the law of cosines in a form suitable for triangulation.[6] As such, the law of cosines is known the théorème d'Al-Kashi in France.[7][8]

In 1972, Nasir Ahmed invented the discrete cosine transform (DCT), an algorithm that utilizes the cosine function. DCT forms the basis of modern digital media, including digital images, audio and video.[9]

See also[]

References[]

  1. Owen Gingerich (1986). Islamic Astronomy. 254. Scientific American. p. 74. http://faculty.kfupm.edu.sa/PHYS/alshukri/PHYS215/Islamic_astronomy.htm. Retrieved 2010-37-13. 
  2. Kennedy, E.S. (1956), A Survey of Islamic Astronomical Tables; Transactions of the American Philosophical Society, 46, Philadelphia: American Philosophical Society, pp. 26–9 
  3. Van Brummelen, Glen (2012). Heavenly mathematics: The forgotten art of spherical trigonometry. Princeton University Press. p. 98. 
  4. Kennedy, E.S.; Muruwwa, Ahmad (1958). "Bīrūnī on the Solar Equation". Journal of Near Eastern Studies 17 (2): 112-121. JSTOR 542617. Template:PbJohannes de Muris credits an anonymous author for the relevant section of his work De Arte Mesurandi. See Van Brummelen, Glen (2009). The Mathematics of the Heavens and the Earth. Princeton University Press. pp. 240–241. 
  5. Naṣīr al-Dīn al-Ṭūsī (1891). "Ch. 3.2: Sur la manière de calculer les côtés et les angles d'un triangle les uns par les autres" (in fr). Traité du quadrilatère attribué a Nassiruddinel-Toussy. Typographie et Lithographie Osmanié. p. 69. https://books.google.com/books?id=gVE7AQAAIAAJ&pg=PA69. "On donne deux côtés et un angle. [...] Que si l'angle donné est compris entre les deux côtés donnés, comme l'angle A est compris entre les deux côtés AB AC, abaissez de B sur AC la perpendiculaire BE. Vous aurez ainsi le triangle rectangle [BEA] dont nous connaissons le côté AB et l'angle A; on en tirera BE, EA, et l'on retombera ainsi dans un des cas précédents; c. à. d. dans le cas où BE, CE sont connus; on connaîtra dès lors BC et l'angle C, comme nous l'avons expliqué" 
  6. O'Connor, John J.; Robertson, Edmund F., "Ghiyath al-Din Jamshid Mas'ud al-Kashi", MacTutor History of Mathematics archive, University of St Andrews, http://www-history.mcs.st-andrews.ac.uk/Biographies/Al-Kashi.html .
  7. Pickover, Clifford A. (2009). The Math Book: From Pythagoras to the 57th Dimension. Sterling Publishing Company, Inc.. p. 106. ISBN 9781402757969. https://books.google.com/books?id=JrslMKTgSZwC&q=al+kashi+law+of+cosines&pg=PA106. 
  8. (in fr) Programme de mathématiques de première générale. Ministère de l'Éducation nationale et de la Jeunesse. 2022. pp. 11,12. 
  9. Jones, Willie D. (19 August 2024). "Nasir Ahmed: An Unsung Hero of Digital Media". IEEE Spectrum. Retrieved 2024-08-25.