Теорема Пифагора— одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Считается, что доказана греческим математиком Пифагором, в честь которого и названа.
Доказательство
Известно, что существует около 350 доказательств теоремы Пифагора. Ниже приведено доказательство, основанное на теореме существования площади фигуры:

Пошаговая иллюстрация доказательства
- Расположим четыре прямоугольных треугольника так, как показано на рисунке.
- Четырехугольник со сторонами с является квадратом, так как сумма двух острых углов , а развернутый угол — .
- Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны - сумме площадей четырех треугольников и внутреннего квадрата.
Что и требовалось доказать.
Обобщения
В случае ортогональной системы векторов
имеет место равенство, также называемое теоремой Пифагора:Если расстоянием Евклида — и означает, что длина вектора есть корень квадратный из суммы квадратов его компонентов.
— это проекции вектора на координатные оси, то эта формула совпадает сАналог этого равенства в случае бесконечной системы вектров носит название равенства Парсеваля.
См. также
Ссылки
Эта статья содержит материал из статьи Теорема Пифагора русской Википедии.