Математика
Im>Thijs!bot
м (робот добавил: fr:Mesure produit)
 
м (1 версий)
(нет различий)

Версия от 02:49, 27 октября 2007

Произведе́ние ме́р в функциональном анализе, теории вероятностей и смежных дисциплинах - формальный способ построить меру на декартовом произведении двух пространств с мерами.

Построение

Пусть - два пространства с мерами. Тогда - декартово произведение множеств и .

является семейством подмножеств . Оно, вообще говоря, не замкнуто относительно счётных объединений, и следовательно не является σ-алгеброй. Введём обозначение

- минимальная σ-алгебра, содержащая . Тогда - измеримое пространство. Определим на нём меру следующим образом:

.

Тогда продолжается единственным образом с на :

или

,

где

- сечение вдоль , а
- сечение вдоль .

Получившаяся мера называется произведением мер и . Пространство с мерой называется (прямым) произведением исходных пространств.

Замечания

.

Пример

Мера Лебега на может быть получена как произведение одномерных мер Лебега на :

,

где обозначает борелевскую σ-алгебру на пространстве , и

.

См. также

th:ปริภูมิเมเชอร์ผลคูณ