Математика
Отрицательное биномиальное распределение
Функция вероятности
Функция распределения
Параметры
(real)
Носитель
Функция вероятности
Функция распределения
Математическое ожидание
Медиана
Мода если
если
Дисперсия
Коэффициент асимметрии
Коэффициент эксцесса
Информационная энтропия
Производящая функция моментов
Характеристическая функция

Отрица́тельное биномиа́льное распределе́ние в теории вероятностей — это распределение дискретной случайной величины равной количеству произошедших неудач в последовательности испытаний Бернулли с вероятностью успеха , проводимой до -го успеха.

Определение[]

Пусть — последовательность независимых случайных величин с распределением Бернулли, то есть

Построим случайную величину следующим образом. Пусть — номер -го успеха в этой последовательности. Тогда . Более строго, положим . Тогда

.

Распределение случайной величины , определённой таким образом, называется отрицательным биномиальным. Пишут: .

Функции вероятности и распределения[]

Функция вероятности случайной величины имеет вид:

.

Функция распределения кусочно-постоянна, и её значения в целых точках может быть выражено через неполную бета-функцию:

.

Моменты[]

Производящая функция моментов отрицательного биномиального распределения имеет вид:

,

откуда

,
.
Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Колмогорова | Коши | логнормальное | Лоренца | нормальное (Гаусса) | равномерное | Парето | Стьюдента | Фишера | хи-квадрат | экспоненциальное | Эрланга многомерное нормальное
править

hu:Negatív binomiális eloszlás nl:Negatief-binomiale verdeling nov:Negativ binomial distributione su:Sebaran binomial négatip