Шаблон:Значения Мно́жество — одно из ключевых понятий математики, в частности, теории множеств и логики.
Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть несводимое к другим понятиям, а значит, и не имеющее определения; для его объяснения используются описательные формулировки, характеризующие множество как совокупность различных элементов, мыслимую как единое целое[1][2]. Также возможно косвенное определение через аксиомы теории множеств. Множество может быть пустым и непустым, упорядоченным и неупорядоченным, конечным и бесконечным, бесконечное множество может быть счётным или несчётным. Более того, как в наивной, так и в аксиоматической теориях множеств любой объект обычно считается множеством.
История понятия[]
Основы теории конечных и бесконечных множеств были заложены Бернардом Больцано, который сформулировал некоторые из её принципов.
С 1872 года по 1897 год (главным образом в 1872—1884 годы) Георг Кантор опубликовал ряд работ, в которых были систематически изложены основные разделы теории множеств, включая теорию точечных множеств и теорию трансфинитных чисел (кардинальных и порядковых). В этих работах он не только ввёл основные понятия теории множеств, но и обогатил математику рассуждениями нового типа, которые применил для доказательства теорем теории множеств, в частности впервые к бесконечным множествам. Поэтому общепризнано, что теорию множеств создал Георг Кантор. В частности определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Эти объекты назвал элементами множества. Множество объектов, обладающих свойством , обозначил . Если некоторое множество , то назвал характеристическим свойством множества .
Эта концепция привела к парадоксам, в частности, к парадоксу Рассела.
Так как теория множеств фактически используется как основание и язык всех современных математических теорий в 1908 году теория множеств была аксиоматизирована независимо Бертраном Расселом и Эрнстом Цермело. В дальнейшем многие исследователи пересматривали и изменяли обе системы, в основном сохранив их характер. До сих пор они всё ещё известны как теория типов Рассела и теория множеств Цермело. Впоследствии теорию множеств Кантора стало принято называть наивной теорией множеств, а вновь построенную — аксиоматической теорией множеств.
В практике, сложившейся с середины XX века множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело — Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).
Элемент множества[]
Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают заглавными буквами латинского алфавита, его элементы — строчными. Если — элемент множества , то записывают (« принадлежит »). Если не является элементом множества , то записывают (« не принадлежит »). В отличие от мультимножества каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов. Иначе говоря, добавление к множеству элементов, идентичных уже принадлежащим множеству, не меняет его:
- .
Некоторые виды множеств и сходных объектов[]
Специальные множества[]
- Пустое множество — множество, не содержащее ни одного элемента.
- Универсальное множество (универсум) — множество, содержащее все мыслимые объекты. В связи с парадоксом Рассела данное понятие трактуется в настоящее время как «множество, включающее все множества, участвующие в рассматриваемой задаче».
- Частично упорядоченное множество, вполне упорядоченное множество — множество, на котором задано отношение порядка.
Сходные объекты[]
- Кортеж (в частности, упорядоченная пара) — упорядоченная совокупность конечного числа именованных объектов. Записывается внутри круглых или угловых скобок, а элементы могут повторяться.
- Мультимножество (в теории сетей Петри называется «комплект») — множество с кратными элементами.
- Пространство — множество с некоторой дополнительной структурой.
- Вектор — элемент линейного пространства, содержащий конечное число элементов некоторого поля в качестве координат. Порядок имеет значение, элементы могут повторяться.
- Последовательность — функция одного натурального переменного. Представляется как бесконечный набор элементов (не обязательно различных), порядок которых имеет значение.
- Нечёткое множество — математический объект, подобный множеству, принадлежность которому задаётся не отношением, а функцией. Иными словами, относительно элементов нечёткого множества можно говорить «в какой мере» они в него входят, а не просто, входят они в него или нет.
По иерархии[]
- Множество множеств (в частности, булеан — множество всех подмножеств данного множества).
- Подмножество
- Надмножество
Отношения между множествами[]
Диаграмма Венна для
Два множества и могут вступать друг с другом в различные отношения.
- включено в , если каждый элемент множества принадлежит также и множеству :
- включает , если включено в :
- равно , если и включены друг в друга:
- строго включено в , если включено в , но не равно ему:
- строго включает , если строго включено в :
- и не пересекаются, если у них нет общих элементов:
- и не пересекаются
- и находятся в общем положении, если существует элемент, принадлежащий исключительно множеству , элемент, принадлежащий исключительно множеству , а также элемент, принадлежащий обоим множествам:
- и находятся в общем положении
Операции над множествами[]
Диаграмма Венна для
Диаграмма Венна для
Диаграмма Венна для
Диаграмма Венна для
Бинарные операции[]
Основные бинарные операции, определяемые над множествами:
- пересечение:
- .
- объединение:
- .
- Если множества и не пересекаются, то . Их объединение обозначают также: .
Для объяснения смысла операций часто используются диаграммы Венна, на которых представлены результаты операций над геометрическими фигурами как множествами точек.
Всякая система множеств, замкнутая относительно операций объединения и пересечения, образует относительно объединения и пересечения дистрибутивную решётку.
Унарные операции[]
Диаграмма Венна для
Дополнение определяется следующим образом:
- .
Операция дополнения подразумевает некоторый зафиксированный универсум (универсальное множество , которое содержит ), и сводится к разности множеств с этим универсумом:
- .
Система множеств с фиксированным универсумом, замкнутая относительно операций объединения, пересечения с введённым таким образом дополнением образует булеву алгебру.
Булеан — множество всех подмножеств:
- .
Обозначение происходит из свойства мощности множества всех подмножеств конечного множества:
- .
Булеан порождает систему множеств с фиксированным универсумом , замкнутую относительно операций объединения и пересечения, то есть, образует булеву алгебру.
Приоритет операций[]
Сначала выполняются унарные операции (дополнение), затем — пересечения, затем — объединения и разности, которые имеют одинаковый приоритет. Последовательность выполнения операций может быть изменена скобками.
Мощность[]
Мощность множества — характеристика множества, обобщающая понятие о количестве элементов для конечного множества таким образом, чтобы множества, между которыми возможно установление биекции были равномощны. Обозначается или . Мощность пустого множества равна нулю, для конечных множеств мощность совпадает с числом элементов, для бесконечных множеств вводятся специальные кардинальные числа, соотносящиеся друг с другом по принципу включения (если , то ) и распространением свойства мощности булеана конечного множества: на случай бесконечных множеств (само обозначение мотивировано этим свойством).
Наименьшая бесконечная мощность обозначается , это мощность счётного множества. Мощность континуума, биективного булеану счётного множества обозначается или . Континуум-гипотеза — предположение о том, что между счётной мощностью и мощностью континуума нет промежуточных мощностей.
Примечания[]
Шаблон:Примечания
Литература[]
- К. Куратовский, А. Мостовский Теория множеств. — М.: Мир, 1970. — 416 с.
- Столл Р. Р. Множества. Логика. Аксиоматические теории.. — М.: Просвещение, 1968. — 232 с.
Шаблон:Rq Шаблон:Логика
- ↑ Кантор:Шаблон:Начало цитаты Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M). Шаблон:Oq Шаблон:Конец цитаты
- ↑ Рассел: «Множество есть совокупность различных элементов, мыслимая как единое целое».