Математика
Advertisement

Компактное пространство — это такое топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие.

В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.

Связанные определения[]

  • Подмножество топологического пространства, являющееся в индуцированной топологии компактным пространством, называется компактным множеством или компактом.
  • Множество называется относительно компактным или предкомпактным, если его замыкание компактно.
  • Пространство называется секвенциально компактным, если из любой последовательности в нём можно выделить сходящуюся подпоследовательность.
  • Локально компактное пространство — топологическое пространство, в котором любая точка имеет компактную окрестность.

Свойства[]

Анекдот

Математик говорит девушке:
— Вы такая компактная…
Девушка наивно уточняет:
— В смысле, стройная и миниатюрная?
— Нет. Замкнутая и ограниченная!

  • Свойства компактных метрических пространств:
    • Метрическое пространство компактно тогда и только тогда, когда любая последовательность точек в нём содержит сходящуюся подпоследовательность.
    • Для конечномерных евклидовых пространств подпространство является компактом тогда и только тогда, когда оно ограничено и замкнуто. Про пространства, обладающие таким свойством, говорят, что они удовлетворяют свойству Гейне — Бореля. См. также Теорема Больцано — Вейерштрасса.
    • Лемма Лебега: Для любого компактного метрического пространства и открытого покрытия существует положительное число такое, что любое подмножество, диаметр которого меньше , содержится в одном из множеств . Такое число называется числом Лебега.
    • В компактных пространствах каждый ультрафильтр сходится по крайней мере к одной точке.
    • В компактных пространствах каждое семейство открытых множетсв, в котором пересечения конечных подсемейств не пусты, имеет непустое пересечение.

Примеры компактных множеств[]

  • замкнутые и ограниченные множества в
  • конечные подмножества в пространствах, удовлетворяющих аксиоме отделимости T1
  • теорема Асколи-Арцела даёт характеризацию компактных множеств для некоторых функциональных пространств. Рассмотрим пространство C(X) вещественных функций на метрическом компактном пространстве X с нормой . Тогда замыкание множества функций F в C(X) компактно тогда и только тогда, когда равномерно ограничено и равностепенно непрерывно.
  • пространство Стоуна булевых алгебр
  • компактификация топологического пространства

История[]

Бикомпактное пространство — термин, введённый П. С. Александровым как усиление введённого М. Фреше понятия компактного пространства: топологическое пространство компактно — в первоначальном смысле слова — если в каждом счётном открытом покрытии этого пространства содержится его конечное подпокрытие. Однако дальнейшее развитие математики показало, что понятие бикомпактности настолько важнее первоначального понятия компактности, что в настоящее время под компактностью понимают именно бикомпактность, а компактные в старом смысле пространства называют счётно-компактными. Оба понятия равносильны в применении к метрическим пространствам.

Литература[]


Эта статья содержит материал из статьи Компактное пространство русской Википедии.

Advertisement