再生時間 01:25
Jurassic World: Dominion Dominates Fandom Wikis - The Loop
この動画はいかがでしたか?
再生する
最小公倍数とは、公倍数の中で最小の整数を指す。式に直すと
のときに、a, bの正の
が成り立つ最小のxのことを言う。
記号だと、
と表記する。定義の正当化
一番単純な公倍数として
を考える。これは必ず公倍数になる。そして、アルキメデスの公理を認めたさい、 の整数は有限である。このとき、仮に の範囲にある整数が存在しないと考える。このとき、一番最初に出てくる公倍数は である。これはa, bが素の場合において成立するが、この性質については後記する。
次に、
の範囲に、a, bの公倍数があると考える。このとき、「空ではない整数の集合には必ず最小の整数が存在している」と仮定した。 の範囲に公倍数が存在するということは、最小の整数も存在しているということである。従って、公倍数が存在するとき、仮定により、最小の公倍数も存在する。従って、この定義は正当化される。具体例
のときを考えてみよう。このとき、
- x = 12n
- x = 16m
つまり、
である整数を探せばよい。このとき、12と16の倍数を羅列すれば- 12n = 12, 24, 36, 48, 60 ...
- 16m = 16, 32, 48, 54, 70 ...
となる。このとき、xを満たす最小の数は48である。従って、
である。