数学 Wiki
Advertisement

とは、集合に、加法 () と乗法 () と呼ばれるその集合上の二つの演算が備わった代数系である。体においては、加法と乗法についての逆元の存在が公理で保証されるため、四則演算を自由に行うことができる(ゼロ除算を除く)。を集合と一つの演算からなる順序対 として捉えることができるように、体も三つ組の順序対 として捉えることができる。

加法と乗法をもつ集合 が体であるとは、次の性質を満たすことをいう。以下、台集合 に加法 "" と乗法 "" が定められているとする。

  1. 加法と乗法両方の可換則すべての について、 かつ
  2. 加法と乗法両方の結合則 — すべての について、 かつ
  3. 加法単位元 — 任意の について となるような、加法単位元と呼ばれる元 存在する
  4. 加法逆元 — 任意の について、 となるような の加法逆元と呼ばれる元 が存在する
  5. 乗法単位元 — 任意の について となるような、0 とは異なる、加法単位元とよばれる元 が存在する
  6. 乗法逆元 — 0でない任意の について、 となるような、の乗法逆元と呼ばれる元 が存在する
  7. 分配法則 — すべての について、

体は、(乗法単位元としての)1 と乗法逆元をもつ可換として定義することもできる。

誤解が生じない限り、三つ組 を単に と略記することも多い。

2つの元の積 はしばしば と略記される。 また、乗法と加法が組み合わさった表記においては、加法が括弧で囲まれていない限りは、乗法の演算が優先される。つまり、 といった具合である。

任意の について、その加法逆元を と表記する。0以外の任意の について、その乗法逆元を と表記する。さらに、減算と呼ばれる演算を で、除算と呼ばれる演算を ( ) で定義する。

重要な結果

体は単位環(単位元を持つ環)であるから、以下の性質は単位環のときと同様に成り立つ。

  • アーベル群
  • (任意の )
  • (任意の )
  • (任意の )
  • (任意の )
  • 減算の分配法則が成り立つ: (任意の )

加えて、次が成り立つ:

  • の 0 でない元全体とするとき、 はアーベル群である。
  • 任意の体は または ( はある素数) と体同型な部分体を持つ.

追加の性質

  • が 体 部分体であるとは、 (部分集合)であり、 の加法と乗法は の加法と乗法を制限したものであることをいう。拡大体である、という言い方も頻繁になされる。実はこのとき、上のベクトル空間である。
  • 順序体であるとは、 上の全順序 が存在し、任意の に対して次が成り立つことをいう。
    • ならば (移動不変性)
    • ならば

  • 通常の和と積の演算により、有理数 ()、 代数的数 ()、実数()、複素数() は体である。
  • の拡大体。例えば、

Related

Elements of a field are the quantities over the vectorspaces are constructed and there are also called the scalars.

In the same branch functions , where is a field are called scalar fields.

関連項目

Advertisement