この記事では、三角関数と双曲線関数、およびそれに関係の深い関数をまとめて記述する。
指数関数 、ベッセル関数 は個別ページを参照。
三角関数 [ ]
三角関数 (さんかくかんすう、英: trigonometric function )とは、平面三角法 における、角 の大きさと線分 の長さの関係を記述する関数 の族 および、それらを拡張して得られる関数の総称である。三角関数 という呼び名は三角法に由来するもので、後述する単位円 を用いた定義に由来する呼び名として、円関数 (えんかんすう、英: circular function )と呼ばれることがある。
三角関数には
sin
,
sec
,
tan
,
cos
,
csc
,
cot
{\displaystyle {\sin,\,\sec,\,\tan,\,\cos,\,\csc,\,\cot}}
の 6 つがあり、それぞれ正弦 (sin e) 、正割 (sec ant) 、正接 (tan gent) 、余弦 (cos ine) 、余割 (cosec ant) 、余接 (cot angent) を意味する。特に sin, cos は幾何学 的にも解析学 的にも良い性質を持っているので、様々な分野で用いられる。例えば波 や電気信号 などは正弦関数と余弦関数を組み合わせることで表現することができる。この事実はフーリエ級数 およびフーリエ変換 の理論として知られ、音声などの信号の合成や解析の手段として利用されている。他にもベクトル の外積 や内積 は正弦関数および余弦関数を用いて表すことができ、ベクトルを図形に対応づけることができる。初等的には、三角関数は実数 を変数 とする一変数関数として定義される。三角関数の変数の対応するものとしては、図形のなす角度や、物体の回転角、波や信号のような周期的 なものに対する位相 などが挙げられる。
三角関数に用いられる独特な記法として、三角関数の累乗 と逆関数 に関するものがある。通常、関数 f (x ) の累乗は (f (x ))2 = f (x )・f (x ) や (f (x ))−1 = 1 / f (x ) のように書くが、三角関数の累乗は sin2 x のように書かれることが多い。逆関数については通常の記法 (f −1 (x ) ) と同じく、sin−1 x などと表す(この文脈では従って、三角関数の逆数 は分数を用いて 1 / sin x のように、あるいは (sin x )−1 などと表される)。文献あるいは著者によっては、通常の記法と三角関数に対する特殊な記法との混同を避けるため、三角関数の累乗を通常の関数と同様にすることがある。また、三角関数の逆関数として −1 と添え字する代わりに関数の頭に arc とつけることがある(たとえば sin の逆関数として sin−1 の代わりに arcsin を用いる)。
直角三角形による定義 [ ]
∠C を直角とする直角三角形ABC
直角三角形 において、1 つの鋭角の大きさが決まれば、三角形 の内角の和は 180° であることから他の 1 つの鋭角の大きさも決まり、3 辺の比も決まる。ゆえに、角度に対して辺比の値を与える関数を考えることができる。
∠C を直角とする直角三角形 ABC において、それぞれの辺の長さを AB = h , BC = a , CA = b と表す(図を参照)。∠A = θ に対して三角形の辺の比 h : a : b が決まることから、
{
sin
θ
=
a
h
sec
θ
=
h
b
=
1
cos
θ
tan
θ
=
a
b
=
sin
θ
cos
θ
{
cos
θ
=
b
h
cosec
θ
=
csc
θ
=
h
a
=
1
sin
θ
cot
θ
=
b
a
=
1
tan
θ
{\displaystyle \begin{align}
&\begin{cases}
\sin \theta = \frac{a}{h}\\
\sec \theta =\frac{h}{b} = \frac{1}{\cos \theta}\\
\tan \theta = \frac{a}{b} = \frac{\sin \theta}{\cos \theta}
\end{cases}\\
&\begin{cases}
\cos \theta = \frac{b}{h}\\
\operatorname{cosec}\theta = \csc \theta = \frac{h}{a} = \frac{1}{\sin \theta}\\
\cot \theta =\frac{b}{a} = \frac{1}{\tan \theta}
\end{cases}\end{align}}
という 6 つの値が定まる。それぞれ正弦 (sin e; サイン)、正割 (sec ant; セカント)、正接 (tan gent; タンジェント)、余弦 (cos ine; コサイン)、余割 (cosec ant; コセカント)、余接 (cot angent; コタンジェント)と呼び、まとめて三角比 と呼ばれる。ただし cosec は長いので csc と略記することも多い。ある角 ∠A に対する余弦、余割、余接はその角 ∠A の余角 (co-angle) に対する正弦、正割、正接として定義される。
{
cos
θ
=
sin
(
90
∘
−
θ
)
=
sin
(
π
2
−
θ
)
csc
θ
=
sec
(
90
∘
−
θ
)
=
sec
(
π
2
−
θ
)
cot
θ
=
tan
(
90
∘
−
θ
)
=
tan
(
π
2
−
θ
)
{\displaystyle \begin{cases}
\cos \theta = \sin \left(90^\circ - \theta \right) = \sin \left(\frac{\pi}{2} - \theta \right)\\
\csc \theta = \sec \left(90^\circ - \theta \right) = \sec \left(\frac{\pi}{2} - \theta \right)\\
\cot \theta = \tan \left(90^\circ - \theta \right) = \tan \left(\frac{\pi}{2} - \theta \right)
\end{cases}}
三角比は平面三角法 に用いられ、巨大な物の大きさや遠方までの距離を計算する際の便利な道具となる。角度 θ の単位 は、通常度 またはラジアン である。
三角比、すなわち三角関数の直角三角形を用いた定義は、直角三角形の鋭角に対して定義されるため、その定義域は θ が 0° から 90° まで(0 から π / 2 まで)の範囲に限られる。また、θ = 90° (= π / 2 ) の場合 sec, tan が、θ = 0°(= 0) の場合 csc, cot がそれぞれ定義されない。これは分母となる辺の比の大きさが 0 になるためゼロ除算 が発生し、その除算自体が数学的に定義されないからである。一般の角度に対する三角関数を得るためには、三角関数について成り立つ何らかの定理を指針として、定義の拡張を行う必要がある。後述する単位円による定義 は初等幾何学におけるそのような拡張の例である。他に同等な方法として、正弦定理 や余弦定理 を用いる方法などがある。
単位円による定義 [ ]
単位円による、6つの三角関数が表す長さ
2 次元ユークリッド空間 R 2 における単位円 {x (t )}2 + {y (t )}2 = 1 上の点を A = (x (t ), y (t )) とする。反時計回り を正の向きとして、原点と円周を結ぶ線分 OA と x 軸のなす角の大きさ ∠x OA を媒介変数 t として選ぶ。このとき実変数 t に対する三角関数は以下のように定義される。
sin
t
=
y
cos
t
=
x
tan
t
=
y
x
=
sin
t
cos
t
{\displaystyle \begin{align}
\sin t &= y\\
\cos t &= x\\
\tan t &= \frac{y}{x} = \frac{\sin t}{\cos t}
\end{align}}
これらは順に正弦関数 (sin e function) 、余弦関数 (cos ine function) 、正接関数 (tan gent function) と呼ばれる。さらにこれらの逆数 として以下の 3 つの関数が定義される。
csc
t
=
1
y
=
1
sin
t
sec
t
=
1
x
=
1
cos
t
cot
t
=
x
y
=
1
tan
t
{\displaystyle \begin{align}
\csc t &= \frac{1}{y} = \frac{1}{\sin t}\\
\sec t &= \frac{1}{x} = \frac{1}{\cos t}\\
\cot t &= \frac{x}{y} = \frac{1}{\tan t}
\end{align}}
これらは順に余割関数 (cosec ant function) 、正割関数 (sec ant function) 、余接関数 (cot angent function) と呼ばれ、sin, cos, tan と合わせて三角関数 と総称される。特に csc, sec, cot は割三角関数 (かつさんかくかんすう)と呼ばれることがある。
この定義は 0 < t < π / 2 の範囲では直角三角形による定義 と一致する。
級数による定義 [ ]
角度、辺の長さといった幾何学的な概念への依存を避けるため、また定義域 を複素数 に拡張するために、級数 を用いて定義することもできる。この定義は実数の範囲では単位円による定義と一致する。以下の級数は共に示される収束円内で収束 する。
sin
z
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
z
2
n
+
1
for all
z
,
cos
z
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
z
2
n
for all
z
,
tan
z
=
∑
n
=
1
∞
(
−
1
)
n
2
2
n
(
1
−
2
2
n
)
B
2
n
(
2
n
)
!
z
2
n
−
1
for
|
z
|
<
π
2
,
cot
z
=
∑
n
=
0
∞
(
−
1
)
n
2
2
n
B
2
n
(
2
n
)
!
z
2
n
−
1
for
0
<
|
z
|
<
π
,
sec
z
=
∑
n
=
0
∞
(
−
1
)
n
E
2
n
(
2
n
)
!
z
2
n
for
|
z
|
<
π
2
,
csc
z
=
∑
n
=
0
∞
(
−
1
)
n
(
2
−
2
2
n
)
B
2
n
(
2
n
)
!
z
2
n
−
1
for
0
<
|
z
|
<
π
.
{\displaystyle \begin{align}
\sin z &= \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n+1)!} z^{2n+1}\quad \text{for all} \ z, \\
\cos z &= \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} z^{2n}\quad \text{for all} \ z, \\
\tan z &= \sum^{\infin}_{n=1} \frac{ (-1)^n 2^{2n} (1-2^{2n}) B_{2n}}{(2n)!} z^{2n-1}\quad \text{for} \ |z| < \frac{\pi}{2}, \\
\cot z &= \sum^{\infin}_{n=0} \frac{(-1)^n 2^{2n} B_{2n}}{(2n)!} z^{2n-1}\quad \text{for} \ 0 < |z| < \pi, \\
\sec z &= \sum^{\infin}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} z^{2n} \quad \text{for} \ |z|<\frac{\pi}{2}, \\
\csc z &= \sum^{\infin}_{n=0} \frac{(-1)^n (2-2^{2n}) B_{2n}}{(2n)!} z^{2n-1}\quad \text{for} \ 0 < |z|< \pi.
\end{align}}
微分方程式による定義 [ ]
実関数 f (x ) の二階線型常微分方程式 の初期値問題
f
″
(
x
)
=
−
f
(
x
)
,
f
(
0
)
=
1
,
f
′
(
0
)
=
0
{\displaystyle f''(x) = -f(x),\;f(0)=1,\;f'(0)=0}
(1 )
の解として cos x を定義し、sin x を −d (cos x )/dx として定義できる[1] [2] 。
(1) を 1 階の連立常微分方程式に書き換えると、g (x ) = f ' (x ) として、
{
f
′
(
x
)
=
g
(
x
)
,
g
′
(
x
)
=
−
f
(
x
)
{\displaystyle \begin{cases}
f'(x) = g(x), \\
g'(x) = -f(x)
\end{cases}}
(2 )
および初期条件 f (0) = 1, g (0) = 0 となる。
他の定義 [ ]
この他にも定積分による(逆三角関数を用いた)定義などが知られている[1] [3] [4] 。
周期性 [ ]
sin x と cos x のグラフ。これらの関数の周期性が確認できる。
x 軸の正の部分となす角は
t
=
θ
+
2
π
n
(
0
≤
θ
<
2
π
,
n
∈
Z
)
{\displaystyle t=\theta +2\pi n\ (0\le \theta <2\pi ,n\isin \mathbb{Z} )}
と表すことができ、θ を偏角 、t を一般角 と言う。
一般角 t が 2π 進めば点 P(cos t , sin t ) は単位円上を 1 周し元の位置に戻る。従って、
cos
(
t
+
2
π
n
)
=
cos
t
sin
(
t
+
2
π
n
)
=
sin
t
{\displaystyle \begin{align}
\cos (t+2\pi n) &= \cos t \\
\sin (t+2\pi n) &= \sin t
\end{align}}
すなわち三角関数 cos, sin は周期 2π の周期関数 である。
ほぼ同様に、tan, cot は周期 π の周期関数、sec, csc は周期 2π の周期関数である。
三角関数のグラフ: Sine(青実線 )、 Cosine(緑実線 )、 Tangent(赤実線 )、 Cosecant(青点線 )、 Secant(緑点線 )、 Cotangent(赤点線 )
双曲線関数 [ ]
数学 において、双曲線関数 (そうきょくせんかんすう、英: hyperbolic function )とは、三角関数 と類似の関数 で、標準形の双曲線 を媒介変数表示 するときなどに現れる。
概要 [ ]
斜線の領域の面積が /2 の時の単位円周上の座標が (cos , sin )
斜線の領域の面積が θ /2 の時の双曲線上の座標が(cosh θ, sinh θ )
三角関数は単位円周を用いて定義することができる。
以下、説明を簡単にするために第一象限(x ≧ 0、かつ、y ≧ 0)の話に限る。
単位円周上の点 A (cos θ, sin θ) と x 軸上の点 B (1, 0)、原点 O を考える。線分 AO 、 BO と弧 AB によって囲まれた領域 の面積は θ/2 である。
この性質を用いて逆に三角関数を定義することもできる。すなわち、単位円周上の点 A と x 軸上の点 B (1, 0)、 を取り、線分 AO 、BO と弧 AB によって囲まれた領域の面積が θ/2 であるとき、 A の座標を (cos θ, sin θ) として、三角関数を定義することができる。
単位円の定義式は
x
2
+
y
2
=
1
{\displaystyle x^2 + y^2 = 1}
であり、標準形の双曲線の定義式は y 2 の符号を変えただけの
x
2
−
y
2
=
1
{\displaystyle x^2 - y^2 = 1}
である。単位円の面積で三角関数を定義したのと同じように双曲線を用いて双曲線関数を定義することができる。
標準形の双曲線上の点 A と x 軸上の点 B (1, 0) を取り、線分 AO 、BO と双曲線の囲む領域の面積が θ/2 であるとき、 A の座標を (cosh θ, sinh θ) として、双曲線関数 cosh, sinh が定義される。
ちなみに、三角関数の定義に現れた θ は、弧度法 における角度に対応していたが、双曲線関数では角度には対応しない。
このように三角関数と双曲線関数は非常に似通った関数として定義され、いろいろな場面でその類似性が現れる。定義に双曲線を用いる関数を双曲線関数と呼ぶことにあわせて、定義に単位円を用いる三角関数の事を円関数 (circular function ) と呼ぶこともある。
定義 [ ]
一般に、双曲線関数は指数関数 e x を用いて
s
i
n
h
x
=
e
x
−
e
−
x
2
,
c
o
s
h
x
=
e
x
+
e
−
x
2
{\displaystyle {\rm sinh}\ x = {e^x - e^{-x} \over 2},\ \ {\rm cosh}\ x = {e^x + e^{-x} \over 2}}
と定義される。sinh, cosh をそれぞれ双曲線正弦 関数 (hyperbolic sine ; ハイパボリックサイン)、双曲線余弦 関数 (hyperbolic cosine ; ハイパボリックコサイン) と呼ぶ。他にも三角関数との類似で双曲線正接・余接関数
t
a
n
h
x
=
s
i
n
h
x
c
o
s
h
x
,
c
o
t
h
x
=
1
t
a
n
h
x
{\displaystyle {\rm tanh}\ x = {{\rm sinh}\ x \over {\rm cosh}\ x},\ \ {\rm coth}\ x = {1 \over {\rm tanh}\ x}}
や、双曲線正割・余割関数
s
e
c
h
x
=
1
c
o
s
h
x
,
c
o
s
e
c
h
x
=
1
s
i
n
h
x
{\displaystyle {\rm sech}\ x = {1 \over {\rm cosh}\ x},\ \ {\rm cosech}\ x = {1 \over {\rm sinh}\ x}}
なども定義できる。また、例えば cosh を cos hyp や
c
o
s
{\displaystyle \mathfrak{cos}}
などと表すこともあり cosech は長いので csch と書くこともある。
このように定義された、双曲線正弦関数、双曲線余弦関数、双曲線正接関数、双曲線余接関数、双曲線正割関数、双曲線余割関数を総称して 双曲線関数 という。
指数関数 e x は x を複素変数に拡張できるので、指数関数で定義されている双曲線関数自体も x を複素変数にとってもよい。
双曲線関数はいずれも名称が長いため、読むときは省略されることも多く sinh はシャイン あるいは シンチ 、cosh はコッシュ と読まれたりもする。
基本性質 [ ]
sinh , cosh と tanh のグラフ。特にcosh x のグラフは懸垂線 として知られている。
csch , sech と coth のグラフ
指数関数 を偶関数 の部分と奇関数 の部分に分けた時、
e
x
=
cosh
x
+
sinh
x
{\displaystyle e^x = \cosh x + \sinh x}
e
−
x
=
cosh
x
−
sinh
x
{\displaystyle e^{-x} = \cosh x - \sinh x}
となり、偶関数部分が cosh x で、奇関数部分が sinh x であることが分かる。
また (cosh x , sinh x ) は、双曲線 x 2 − y 2 = 1 上の点であり
cosh
2
x
−
sinh
2
x
=
1
{\displaystyle \cosh^2 x - \sinh^2 x = 1}
逆三角関数 [ ]
数学 において、逆三角関数 (ぎゃくさんかくかんすう、英: inverse trigonometric function 、時折 cyclometric function [5] )は(定義域 を適切に制限した)三角関数 の逆関数 である。具体的には、それらは正弦 (sine) 、余弦 (cosine) 、正接 (tangent) 、余接 (cotangent) 、正割 (secant) 、余割 (cosecant) 関数の逆関数である。それらは角度の三角比の任意から角度を得るために使われる。逆三角関数は工学 、navigation 、物理学 、幾何学 において広く使われる。
表記 [ ]
逆三角関数に対して用いられるたくさんの表記がある。表記 sin−1 (x ) , cos−1 (x ) , tan−1 (x ) , etc. はしばしば使われるが、この慣習は関数の合成ではなく冪乗を意味する sin2 (x ) のような表現の一般的なセマンティクスと論理的には相反し、それゆえ乗法逆元 と合成的逆 の間の混乱を起こすかもしれない。三角関数の各逆数はそれ自身の名前を持っている、例えば cos(x )−1 =sec(x ) 、という事実によって混乱は幾分改善される。著者によっては別の慣習が使われる[6] 。最初の文字を大文字にして −1 の右上添え字とともに用いるのである。例えば Sin−1 (x ) , Cos−1 (x ) , etc. これは sin−1 (x ) , cos−1 (x ) , etc. によって表現されるべき乗法逆元との混乱を避ける。ところが語頭の大文字を主値を取ることを意味するために使う著者もいる。また別の慣習は接頭辞に arc- を用いることであり、右上の −1 の添え字の混乱は完全に解消される、例えば、arcsin (x ) , arccos (x ) , etc. この慣習は記事全体において用いられる。コンピュータプログラミング言語において逆三角関数は通常 asin, acos, atan と呼ばれる。
arc- 接頭辞の起源 [ ]
ラジアン で測るとき、θ ラジアンの角度は長さが rθ の弧 (arc) に対応する。ただし r は円の半径である。従って、単位円 において、"コサインが x の arc" は "コサインが x である角度"と同じである、なぜならば単位円の弧長 はラジアンによって角度を測ったものと同じだからである[7] 。
基本的な性質 [ ]
主値 [ ]
6つの三角関数はいずれも単射 でないから、逆関数を持つように制限される。それゆえ逆関数の値域 はもとの関数の定義域の真の部分集合 である。
例えば、多価関数 の意味で関数 を用いて、平方根 関数 y = √ x が y 2 = x から定義できるのとちょうど同じように、関数 y = arcsin(x ) は sin(y ) = x であるように定義される。sin(y ) = x であるような数 y は複数存在する; 例えば、sin(0) = 0 であるが、sin(π) = 0, sin(2π) = 0 , etc. でもある。ただ 1 つだけの値が望まれているとき、関数はその主枝 に制限される。この制限とともに、定義域の各 x に対して表現 arcsin(x ) はその主値 と呼ばれるただ 1 つの値だけを返す。これらの性質はすべての逆三角関数についても同様に当てはまる。
主逆関数は以下の表にリストされる。
名前
通常の表記
定義
実数を与える x の定義域
通常の主値の終域 (ラジアン )
通常の主値の終域 (度 )
arcsine
y = arcsin x
x = sin y
−1 ≤ x ≤ 1
−π/2 ≤ y ≤ π/2
−90° ≤ y ≤ 90°
arccosine
y = arccos x
x = cos y
−1 ≤ x ≤ 1
0 ≤ y ≤ π
0° ≤ y ≤ 180°
arctangent
y = arctan x
x = tan y
すべての実数
−π/2 < y < π/2
−90° < y < 90°
arccotangent
y = arccot x
x = cot y
すべての実数
0 < y < π
0° < y < 180°
arcsecant
y = arcsec x
x = sec y
x ≤ −1 or 1 ≤ x
0 ≤ y < π/2 or π/2 < y ≤ π
0° ≤ y < 90° or 90° < y ≤ 180°
arccosecant
y = arccsc x
x = csc y
x ≤ −1 or 1 ≤ x
−π/2 ≤ y < 0 or 0 < y ≤ π/2
−90° ≤ y < 0° or 0° < y ≤ 90°
(注意: arcsecant 関数の終域を (0 ≤ y < π/2 or π ≤ y < 3π/2) と定義する著者もいる、なぜならば tangent 関数がこの定義域上非負だからである。これによっていくつかの計算がより首尾一貫したものになる。例えば、この終域を用いて、tan(arcsec(x )) = √ x 2 − 1 と表せる。一方で終域 (0 ≤ y < π/2 or π/2 < y ≤ π) を用いる場合、tan(arcsec(x )) = ± √ x 2 − 1 と書かねばならない、なぜならば tangent 関数は 0 ≤ y < π/2 上は負でないが π/2 < y ≤ π 上は正でないからである。類似の理由のため、同じ著者は arccosecant 関数の終域を (−π < y ≤ −π/2 or 0 < y ≤ π/2) と定義する。)
x が複素数 であることを許す場合、y の終域はその実部にのみ適用する。
応用 [ ]
一般の解 [ ]
各三角関数は引数の実部において周期的であり、2π の各区間において2度すべてのその値を取る。サインとコセカントは(k を整数として)周期を 2π k − π /2 で始め 2π k + π /2 で終わり、2π k + π /2 から 2π k + 3π /2 までは逆にする。コサインとセカントは周期を 2π k で始め 2π k + π で終わらせそれから 2π k + π から 2π k + 2π まで逆にする。タンジェントは周期を 2π k − π /2 から始め 2π k + π /2 で終わらせそれから 2π k + π /2 から 2π k + 3π /2 まで(前へ)繰り返す。コタンジェントは周期を 2π k で始め 2π k + π で終わらせそれから 2π k + π から 2π k + 2π まで(前へ)繰り返す。
この周期性は k を何か整数として一般の逆において反映される:
sin
(
y
)
=
x
⇔
y
=
arcsin
(
x
)
+
2
k
π
or
y
=
π
−
arcsin
(
x
)
+
2
k
π
{\displaystyle \sin(y) = x \ \Leftrightarrow\ y = \arcsin(x) + 2k\pi \text{ or } y = \pi - \arcsin(x) + 2k\pi}
1 つの方程式に書けば:
sin
(
y
)
=
x
⇔
y
=
(
−
1
)
k
arcsin
(
x
)
+
k
π
{\displaystyle \sin(y) = x \ \Leftrightarrow\ y = (-1)^k\arcsin(x) + k\pi}
cos
(
y
)
=
x
⇔
y
=
arccos
(
x
)
+
2
k
π
or
y
=
2
π
−
arccos
(
x
)
+
2
k
π
{\displaystyle \cos(y) = x \ \Leftrightarrow\ y = \arccos(x) + 2k\pi \text{ or } y = 2\pi - \arccos(x) + 2k\pi}
1 つの方程式に書けば:
cos
(
y
)
=
x
⇔
y
=
±
arccos
(
x
)
+
2
k
π
{\displaystyle \cos(y) = x \ \Leftrightarrow\ y = \pm\arccos(x) + 2k\pi}
tan
(
y
)
=
x
⇔
y
=
arctan
(
x
)
+
k
π
{\displaystyle \tan(y) = x \ \Leftrightarrow\ y = \arctan(x) + k\pi}
cot
(
y
)
=
x
⇔
y
=
arccot
(
x
)
+
k
π
{\displaystyle \cot(y)=x\ \Leftrightarrow \ y=\operatorname {arccot}(x)+k\pi }
sec
(
y
)
=
x
⇔
y
=
arcsec
(
x
)
+
2
k
π
or
y
=
2
π
−
arcsec
(
x
)
+
2
k
π
{\displaystyle \sec(y)=x\ \Leftrightarrow \ y=\operatorname {arcsec}(x)+2k\pi {\text{ or }}y=2\pi -\operatorname {arcsec}(x)+2k\pi }
csc
(
y
)
=
x
⇔
y
=
arccsc
(
x
)
+
2
k
π
or
y
=
π
−
arccsc
(
x
)
+
2
k
π
{\displaystyle \csc(y)=x\ \Leftrightarrow \ y=\operatorname {arccsc}(x)+2k\pi {\text{ or }}y=\pi -\operatorname {arccsc}(x)+2k\pi }
応用: 直角三角形の角度を見つけること [ ]
直角三角形。
逆三角関数は直角三角形 の残りの 2 つの角度を決定しようとするときに三角形の辺の長さが知られているときに有用である。例えば sin の直角三角形による定義を思い出すと
θ
=
arcsin
(
opposite
hypotenuse
)
{\displaystyle \theta = \arcsin \left( \frac{\text{opposite}}{\text{hypotenuse}} \right)}
が従う。しばしば、斜辺 (hypotenuse ) は未知であり arcsin や arccos を使う前にピタゴラスの定理 を使って計算される必要がある:a 2 + b 2 = h 2 , ただし h は 斜辺の長さである。アークタンジェントはこの状況で重宝する、なぜなら斜辺の長さは必要ないからだ。
θ
=
arctan
(
opposite
adjacent
)
.
{\displaystyle \theta = \arctan \left( \frac{\text{opposite}}{\text{adjacent}} \right).}
例えば、7 メートル行くと 3 メートル下がる屋根を考えよう。この屋根は水平線と角度 θ をなす。このとき θ は次のように計算できる:
θ
=
arctan
(
opposite
adjacent
)
=
arctan
(
rise
run
)
=
arctan
(
3
7
)
≈
23.2
∘
.
{\displaystyle \theta = \arctan \left(\frac{\text{opposite}}{\text{adjacent}} \right) = \arctan \left( \frac{\text{rise}}{\text{run}} \right) = \arctan \left( \frac{3}{7} \right) \approx 23.2^{\circ}.}
コンピュータサイエンスとエンジニアリングにおいて [ ]
アークタンジェントの 2 引数の変種 [ ]
主要記事: atan2
atan2 関数は 2 つの引数を取り、与えられた y と x に対して y /x のアークタンジェントを計算する関数だが、その返り値は (−π, π] の範囲に定める。言い換えると、atan2(y , x ) は平面の正の x -軸とその上の点 (x , y ) の間の角度に反時計回り の角度(上半平面、y > 0 )に対して正の符号をつけて時計回りの角度(下半平面、y < 0 )には負の符号をつけたものである。atan2 関数は最初多くのコンピュータプログラミング言語において導入されたが、今日では他の科学や工学の分野においても一般的に用いられている。
atan2 は標準的な arctan 、すなわち終域を (−π/2, π/2) に持つ、を用いて次のように表現できる:
atan2
(
y
,
x
)
=
{
arctan
(
y
x
)
x
>
0
arctan
(
y
x
)
+
π
y
≥
0
,
x
<
0
arctan
(
y
x
)
−
π
y
<
0
,
x
<
0
π
2
y
>
0
,
x
=
0
−
π
2
y
<
0
,
x
=
0
undefined
y
=
0
,
x
=
0
{\displaystyle \operatorname{atan2}(y, x) = \begin{cases}
\arctan(\frac y x) & \qquad x > 0 \\
\arctan(\frac y x) + \pi & \qquad y \ge 0 , x < 0 \\
\arctan(\frac y x) - \pi & \qquad y < 0 , x < 0 \\
\frac{\pi}{2} & \qquad y > 0 , x = 0 \\
-\frac{\pi}{2} & \qquad y < 0 , x = 0 \\
\text{undefined} & \qquad y = 0, x = 0
\end{cases}}
それはまた複素数 x + iy の偏角 の主値 にも等しい。
この関数はタンジェント半角公式を用いて次のようにも定義できる: x > 0 あるいは y ≠ 0 ならば
atan2
(
y
,
x
)
=
2
arctan
y
x
2
+
y
2
+
x
{\displaystyle \operatorname{atan2}(y, x)=2\arctan \frac{y}{\sqrt{x^2 + y^2} + x} }
しかしながらこれは x ≤ 0 かつ y = 0 が与えられると成り立たないので、計算機で用いる定義としては適切ではない。
上の引数の順序 (y , x ) は最も一般的のようであり、特にC言語のようなISO規格において用いられるが、少数の著者は逆の慣習 (x , y ) を用いているため、注意が必要である。これらのバリエーションは atan2 に詳しい。
x, y 共に 0 の場合、インテルの CPU の FPATAN 命令、Javaプラットフォーム、.NET Framework などは下記ルールに従っている。
atan2(+0, +0) = +0
atan2(+0, −0) = +π
atan2(−0, +0) = −0
atan2(−0, −0) = −π
位置パラメータを伴うアークタンジェント関数 [ ]
多くの応用において[どれ? ] 方程式 x = tan y の解 y は与えられた値 −∞ < η < ∞ にできるだけ近い値を取るべきである。適切な解はパラメータ修正アークタンジェント関数
y
=
arctan
η
x
:=
arctan
x
+
π
⋅
rni
η
−
arctan
x
π
{\displaystyle y=\arctan_\eta x:=\arctan x+\pi\cdot\operatorname{rni}\frac{\eta-\arctan x}{\pi} \, }
によって得られる。丸め関数
rni
{\displaystyle \operatorname{rni}}
は引数に最も近い整数を与える (r ound to the n earest i nteger) 。
実際的考慮 [ ]
0 と π の近くの角度に対して、アークコサインは ill-conditioned であり、計算機において角度計算の実装に用いると精度が落ちてしまう(桁数の制限のため)。同様に、アークサインは −π/2 と π/2 の近くの角度に対して精度が低い。すべての角度に対して十分な精度を達成するには、実装ではアークタンジェントあるいは atan2 を使うべきである。
逆双曲線関数 [ ]
関数 artanh のグラフ
逆双曲線関数 (ぎゃくそうきょくせんかんすう、英語: inverse hyperbolic functions )は、数学 において与えられた双曲線関数 の値に対応して双曲角 を与える関数 。双曲角の大きさは双曲線 x y = 1に対応する双曲的扇形 の面積 に等しく、単位円 の扇形 の面積は対応する中心角 の2分の1 である。一部の研究者は逆双曲線関数のことを、双曲角を明確に理解するため「面積関数」(英語: area function )と呼ぶ。
逆双曲線関数を表す略記法 arsinh やarcosh とは異なる略記法として、arcsinh やarccosh などが本来誤表記であるにも関わらす良く使用されるのだが、接頭辞 arc はarcus (弓 )の省略形であり、接頭辞ar はarea の省略形である[8] [9] [10] 。argsinh, argcosh, argtanhなどの表記を好んで用いる研究者もいる。計算機科学 の分野では、しばしばasinh という省略形を用いる。累乗 を表す上付き文字−1と誤解しないように注意を払う必要があるという事実にもかかわらず、sinh−1 (x ), cosh−1 (x ), などの略記も用いられる。また、cosh−1 (x ) とcosh(x )−1 は似て非なるものである。
対数表現 [ ]
演算子 は複素数平面 で次のように定義される。
arsinh
z
=
ln
(
z
+
z
2
+
1
)
arcosh
z
=
ln
(
z
+
z
+
1
z
−
1
)
artanh
z
=
1
2
ln
(
1
+
z
1
−
z
)
arcoth
z
=
1
2
ln
(
z
+
1
z
−
1
)
arcsch
z
=
ln
(
1
z
+
1
z
2
+
1
)
arsech
z
=
ln
(
1
z
+
1
z
+
1
1
z
−
1
)
{\displaystyle
\begin{align}
\operatorname{arsinh}\, z &= \ln(z + \sqrt{z^2 + 1} \,)
\\[2.5ex]
\operatorname{arcosh}\, z &= \ln(z + \sqrt{z+1} \sqrt{z-1} \,)
\\[1.5ex]
\operatorname{artanh}\, z &= \tfrac12\ln\left(\frac{1+z}{1-z}\right)
\\
\operatorname{arcoth}\, z &= \tfrac12\ln\left(\frac{z+1}{z-1}\right)
\\
\operatorname{arcsch}\, z &= \ln\left( \frac{1}{z} + \sqrt{ \frac{1}{z^2} +1 } \,\right)
\\
\operatorname{arsech}\, z &= \ln\left( \frac{1}{z} + \sqrt{ \frac{1}{z} + 1 } \, \sqrt{ \frac{1}{z} -1 } \,\right)
\end{align}
}
上記の平方根 は正の平方根であり、対数関数 は複素対数である。実数の引数 、例えばz = xは実数値を返すが、一定の簡素化を行うことが可能であり、例えば
x
+
1
x
−
1
=
x
2
−
1
{\displaystyle \sqrt{x+1}\sqrt{x-1}=\sqrt{x^2-1}}
は正の平方根を使うとき、一般に真ではない。
グーデルマン関数 [ ]
グーデルマン関数 (グーデルマンかんすう、英語: Gudermannian function 、ドイツ語 : Gudermannfunktion )は、クリストフ・グーデルマン(1798–1852)にちなんで命名された、複素数 を用いない三角関数及び双曲線関数と関係する関数 。
定義 [ ]
グーデルマン関数とその漸近線 y = ±π/2を青色で示した図
定義は以下のとおりである。
g
d
x
=
∫
0
x
d
t
cosh
t
=
arcsin
(
tanh
x
)
=
a
r
c
t
a
n
(
sinh
x
)
=
2
arctan
[
tanh
(
1
2
x
)
]
=
2
arctan
(
e
x
)
−
1
2
π
.
{\displaystyle \begin{align}{\rm{gd}}\,x&=\int_0^x\frac{dt}{\cosh t} \\[8pt]
&=\arcsin\left(\tanh x \right)
=\mathrm{arctan}\left(\sinh x \right) \\[8pt]
&=2\arctan\left[\tanh\left(\frac{1}{2}x\right)\right]
=2\arctan(e^x)-\frac{1}{2}\pi.
\end{align}\,\!}
グーデルマン関数と関連する公式 の中には、定義として全く運用できないものがある。例えば、実数x について、
arccos
s
e
c
h
x
=
|
g
d
x
|
=
arcsec
(
cosh
x
)
{\displaystyle \arccos \mathrm {sech} \,x=\vert \mathrm {gd} \,x\vert =\operatorname {arcsec}(\cosh x)}
である。
歴史 [ ]
この関数は、ヨハン・ハインリッヒ・ランベルトによって1760年代に双曲線関数と同じ頃に紹介された。彼はそれを「超越角」(transcendent angle )と呼び、アーサー・ケイリーが1862年に、1830年代のグーデルマンによる特殊関数 の理論の功績にちなんで「グーデルマン関数」と呼ぶことを提案するまで、様々な名称で呼ばれてきた[11] 。グーデルマンは、幅広い読者に向けてsinh とcosh (同書では
S
i
n
{\displaystyle \mathfrak{Sin}}
と
C
o
s
{\displaystyle \mathfrak{Cos}}
の表記を用いた)を説いた1833年の著書"Theorie der potenzial- oder cyklisch-hyperbolischen functionen "に、クレレ誌で発表した論文を収録した。
グーデルマン関数を表す記号gd は、Philosophical Magazine XXIV巻の19ページ[12] において、ケイリーが正割関数の積分の逆について、gd. u を用いたのが始まりである。ここで、
u
=
∫
0
ϕ
sec
t
d
t
=
ln
tan
(
1
4
π
+
1
2
ϕ
)
{\displaystyle u = \int_0^\phi \sec t \,dt = \ln\tan\left(\frac{1}{4}\pi+\frac{1}{2}\phi\right)}
であり、超越の定義を次のように示した。
gd
u
=
i
−
1
ln
tan
(
1
4
π
+
1
2
u
i
)
{\displaystyle \operatorname{gd} \,u = i^{-1}\ln\tan\left(\frac{1}{4}\pi+\frac{1}{2}ui\right)}
よって、それはu の実関数 であることが即座に見いだされる。
適用 [ ]
地球を真球 と見立てたとき、メルカトル図法 による投影面上における、赤道 からの緯線 距離についてのグーデルマン関数の関数値は、子午線弧 長、すなわち実際の地球上の緯度 に相当する。ガウス・クリューゲル図法 による地図投影 においては、座標換算の中間変数として用いられる正角緯度 の導入時においてもグーデルマン関数が現れる[13] 。
また、グーデルマン関数は、倒立振子(とうりつしんし、Inverted pendulum )の非周期解に現れる[14] 。
逆グーデルマン関数 [ ]
グーデルマン関数の逆関数
グーデルマン関数の逆関数 (逆グーデルマン関数又はランベルト関数と称する)は、区間
(
−
π
/
2
,
π
/
2
)
{\displaystyle \left(-\pi/2, \pi/2\right)}
において、次のように与えられる。
gd
−
1
x
=
∫
0
x
d
t
cos
t
=
ln
|
1
+
sin
x
cos
x
|
=
1
2
ln
|
1
+
sin
x
1
−
sin
x
|
=
ln
|
tan
x
+
sec
x
|
=
ln
|
tan
(
1
4
π
+
1
2
x
)
|
=
a
r
t
a
n
h
(
sin
x
)
=
a
r
s
i
n
h
(
tan
x
)
.
{\displaystyle
\begin{align}
\operatorname{gd}^{-1}\,x & = \int_0^x\frac{dt}{\cos t} \\[8pt]
& = \ln\left| \frac{1 + \sin x}{\cos x} \right| = \frac{1}{2}\ln \left| \frac{1 + \sin x}{1 - \sin x} \right| \\[8pt]
& = \ln\left| \tan x +\sec x \right| = \ln \left| \tan\left(\frac{1}{4}\pi + \frac{1}{2}x\right) \right| \\[8pt]
& = \mathrm{artanh}\,(\sin x) = \mathrm{arsinh}\,(\tan x).
\end{align}
}
sinc関数 [ ]
正規化sinc(青) と非正規化sinc(赤)。−6π ≤ x ≤ 6π
sinc 関数 (ジンクかんすう、シンクかんすう)は、正弦関数をその変数で割って得られる初等関数 である。sinc(x ), Sinc(x ), sinc x などで表される。
定義 [ ]
sinc 関数は、正規化 sinc 関数と非正規化 sinc 関数という名で区別される、2種類の定義を持つ。
デジタル信号処理 などでは、次の正規化 sinc 関数 (標本化関数 ともいう)が普通である。
s
i
n
c
(
x
)
=
sin
π
x
π
x
.
{\displaystyle \mathrm{sinc}(x) = \frac{\sin \pi x}{\pi x}.}
数学 では、次の歴史的な非正規化 sinc 関数 が使われる。
s
i
n
c
(
x
)
=
sin
x
x
.
{\displaystyle \mathrm{sinc}(x) = \frac{\sin x}{x}.}
いずれの場合も、可除特異点である 0 での値が必要であればしばしば明示的に sinc(0) = 1 が定義として与えられる。sinc 関数はいたるところ解析的 である。
sinc 関数は カーディナル・サイン (cardinal sine) とも呼ばれ、"sinc" (英語発音: [ˈsɪŋk] ) の関数名はラテン語の sinus cardinalis を短縮したものである。
sinc関数の性質 [ ]
特にことわらないかぎり、正規化sinc関数について述べる。非正規化sinc関数は、スケールファクタ
π
{\displaystyle \pi }
が違うだけなので、非正規化sinc関数についての式を得るには、
x
←
x
/
π
{\displaystyle x \leftarrow x / \pi \,}
を代入すればいい。
直交性 [ ]
∫
−
∞
∞
s
i
n
c
(
x
−
i
)
s
i
n
c
(
x
−
j
)
d
x
=
δ
i
j
,
if
i
,
j
∈
Z
{\displaystyle \int_{-\infty}^{\infty} \mathrm{sinc}(x-i)\mathrm{sinc}(x-j) \, dx = \delta_{ij}, \mbox{ if } i, j \in \mathbb{Z}}
信号処理への応用 [ ]
さまざまな用途が考えられるが、コンパクト・サポート でない(非0の値が有限区間に限定されていない)ため、非常に多くの計算量を要することが多い。有限長で計算をうち切らなければならないことも多く、無限長では生じない問題が発生することもある。概して、理論的背景やシミュレーションにとどまることが多い。
直交性と ±∞ での収束性から、直交ウェーブレット変換 の基底 に用いる。ただし、コンパクト・サポートでないため、計算量が O(N 2 )(ランダウの記号 )で増える。これは、コンパクト・サポートな基底だと計算量が O (N ) であることに比べ、大きなデメリットである。
sinc 関数のフーリエ変換が矩形関数であることから、リサンプリング や内挿 の補間カーネル (低域通過フィルタ )に用いる。無限系列の信号に対しては、sinc 関数は理想的な補間カーネルである。しかし、コンパクト・サポートでないことが実際の有限長の信号を処理する際には問題となるため、実際の信号処理では、sinc 関数に似たコンパクト・サポート関数である、3次畳み込み関数や、ランツォシュ・フィルタ(Lanczosフィルタ)などが使われることが多い。
矩形関数のフーリエ変換がsinc 関数であることから、sinc 関数を使えば、理想的なD/A変換 ができる。ただしこれは、重要な概念ではあるが、実際にこのやりかたで D/A 変換がなされるわけではない。
その他の関数 [ ]
平行角関数 [ ]
数式
π
/
2
−
g
d
x
{\displaystyle \pi/2 - \mathrm{gd}\,x}
は、双曲幾何学 において、平行角 関数を定義する。
haversine 半正矢関数 [ ]
hav
x
=
d
e
f
1
2
(
1
−
cos
x
)
=
sin
2
x
2
{\displaystyle \operatorname{hav}x \ \overset{\underset{\mathrm{def}}{}}{=} \ \frac{1}{2}(1-\cos x) = \sin ^2\frac{x}{2} \!}
で定義される半正矢関数
hav
(
)
{\displaystyle \operatorname{hav}() }
が航海用として使用されていた。定義よりこの関数の値は常に正であり、
hav
(
−
x
)
=
hav
x
{\displaystyle \operatorname{hav}(-x) = \operatorname{hav}x }
である。
cos
x
=
1
−
2
hav
x
{\displaystyle \cos x = 1-2\operatorname{hav}x \!}
から、最初の球面三角法の余弦定理を書き直すと
1
−
2
hav
a
=
cos
b
cos
c
+
sin
b
sin
c
(
1
−
2
hav
A
)
{\displaystyle 1-2\operatorname{hav}a = \cos b \cos c + \sin b \sin c (1-2\operatorname{hav}A) \!}
より
hav
a
=
hav
(
b
−
c
)
+
sin
b
sin
c
hav
A
{\displaystyle \operatorname{hav}a\ = \operatorname{hav}(b-c)+\sin b \sin c\ \operatorname{hav} A\!
}
となる。
古い関数 [ ]
単位円と角 θ に対する三角関数の関係。
三角関数から求められる versine, coversine, haversine, exsecant などの各関数は、かつて測量 などに用いられた。例えば haversine は球面上の2点の距離を求めるのに使用された。haversineを使用すると関数表の表をひく回数を減らすことができるからである。(参考:球面三角法 ) 今日ではコンピュータの発達により、これらの関数はほとんど使用されない。
versine と coversine は日本語では「正矢」「余矢」と呼ばれ、三角関数とともに八線表 として1つの数表にまとめられていた。
名前
表記
値
versed sine, versine 正矢
versin
θ
{\displaystyle \operatorname{versin}\theta}
vers
θ
{\displaystyle \operatorname{vers}\theta}
ver
θ
{\displaystyle \operatorname{ver}\theta}
1
−
cos
θ
{\displaystyle 1 - \cos\theta\!}
versed cosine, vercosine
vercosin
θ
{\displaystyle \operatorname{vercosin}\theta}
1
+
cos
θ
{\displaystyle 1 + \cos\theta\!}
coversed sine, coversine 余矢
coversin
θ
{\displaystyle \operatorname{coversin}\theta}
cvs
θ
{\displaystyle \operatorname{cvs}\theta}
1
−
sin
θ
{\displaystyle 1 - \sin\theta\!}
coversed cosine, covercosine
covercosin
θ
{\displaystyle \operatorname{covercosin}\theta}
1
+
sin
θ
{\displaystyle 1 + \sin\theta\!}
half versed sine, haversine
haversin
θ
{\displaystyle \operatorname{haversin}\theta}
1
−
cos
θ
2
{\displaystyle \frac{1 - \cos \theta}{2}}
half versed cosine, havercosine
havercosin
θ
{\displaystyle \operatorname{havercosin}\theta}
1
+
cos
θ
2
{\displaystyle \frac{1 + \cos \theta}{2}}
half coversed sine, hacoversine cohaversine
hacoversin
θ
{\displaystyle \operatorname{hacoversin}\theta}
1
−
sin
θ
2
{\displaystyle \frac{1 - \sin \theta}{2}}
half coversed cosine, hacovercosine cohavercosine
hacovercosin
θ
{\displaystyle \operatorname{hacovercosin}\theta}
1
+
sin
θ
2
{\displaystyle \frac{1 + \sin \theta}{2}}
exterior secant, exsecant
exsec
θ
{\displaystyle \operatorname{exsec}\theta}
sec
θ
−
1
{\displaystyle \sec\theta - 1\!}
exterior cosecant, excosecant
excsc
θ
{\displaystyle \operatorname{excsc}\theta}
csc
θ
−
1
{\displaystyle \csc\theta - 1\!}
chord (弦 の長さ)
crd
θ
{\displaystyle \operatorname{crd}\theta}
2
sin
θ
2
{\displaystyle 2\sin\frac{\theta}{2}}
複素平面 [ ]
三角関数 [ ]
exp z , cos z , sin z の級数による定義 から、オイラーの公式 exp (iz ) = cos z + i sin z を導くことができる。この公式から下記の 2 つの等式
exp
(
i
z
)
=
e
i
z
=
cos
z
+
i
sin
z
,
exp
(
−
i
z
)
=
e
−
i
z
=
cos
z
−
i
sin
z
{\displaystyle \begin{align}
\exp(iz) &= e^{iz} = \cos z + i \sin z,\\
\exp(-iz) &= e^{-iz} = \cos z - i \sin z
\end{align}}
が得られるから、これを連立させて解くことにより、正弦関数・余弦関数の指数関数 を用いた表現が可能となる。即ち、
cos
z
=
e
i
z
+
e
−
i
z
2
,
sin
z
=
e
i
z
−
e
−
i
z
2
i
{\displaystyle \begin{align}
\cos z &= \frac{e^{iz} + e^{-iz}}{2} ,\\
\sin z &= \frac{e^{iz} - e^{-iz}}{2i}
\end{align}}
が成り立つ。この事実により、級数によらずこの等式をもって複素変数の正弦・余弦関数の定義とすることもある。また、
cos
(
i
z
)
=
e
−
z
+
e
z
2
=
cosh
z
,
sin
(
i
z
)
=
e
−
z
−
e
z
2
i
=
i
sinh
z
{\displaystyle \begin{align}
\cos(iz) &= \frac{e^{-z} +e^z}{2} = \cosh z, \\
\sin(iz) &= \frac{e^{-z} -e^z}{2i} = i\sinh z
\end{align}}
が成り立つ。ここで cosh z , sinh z は双曲線関数 を表す。この等式は三角関数と双曲線関数の関係式と捉えることもできる。複素数 z を z = x + iy (x , y ∈ R ) と表現すると、加法定理より
cos
z
=
cos
(
x
+
i
y
)
=
cos
x
cosh
y
−
i
sin
x
sinh
y
,
sin
z
=
sin
(
x
+
i
y
)
=
sin
x
cosh
y
+
i
cos
x
sinh
y
{\displaystyle \begin{align}
\cos z &= \cos(x + iy) = \cos x \cosh y - i \sin x \sinh y, \\
\sin z &= \sin(x + iy) = \sin x \cosh y + i \cos x \sinh y
\end{align}}
が成り立つ。
他の三角関数は csc z = 1 / sin z , sec z = 1 / cos z , tan z = sin z / cos z , cot z = cos z / sin z によって定義できる。
逆三角関数 [ ]
逆三角関数は解析関数 であるから、実数直線から複素平面に拡張することができる。その結果は複数のシートと分岐点 を持つ関数になる。拡張を定義する 1 つの可能な方法は:
arctan
z
=
∫
0
z
d
x
1
+
x
2
z
≠
−
i
,
+
i
{\displaystyle \arctan z = \int_0^z \frac{d x}{1 + x^2} \quad z \neq -i, +i \,}
ただし −i と +i の真の間にない虚軸の部分は主シートと他のシートの間の cut である;
arcsin
z
=
arctan
z
1
−
z
2
z
≠
−
1
,
+
1
{\displaystyle \arcsin z = \arctan \frac{z}{\sqrt{1 - z^2}} \quad z \neq -1, +1 \,}
ただし(平方根関数は負の実軸に沿って cut を持ち)−1 と +1 の真の間にない実軸の部分は arcsin の主シートと他のシートの間の cut である;
arccos
z
=
π
2
−
arcsin
z
z
≠
−
1
,
+
1
{\displaystyle \arccos z = \frac{\pi}{2} - \arcsin z \quad z \neq -1, +1 \,}
これは arcsin と同じ cut を持つ;
arccot
z
=
π
2
−
arctan
z
z
≠
−
i
,
+
i
{\displaystyle \operatorname {arccot} z={\frac {\pi }{2}}-\arctan z\quad z\neq -i,+i\,}
これは arctan と同じ cut を持つ;
arcsec
z
=
arccos
1
z
z
≠
−
1
,
0
,
+
1
{\displaystyle \operatorname {arcsec} z=\arccos {\frac {1}{z}}\quad z\neq -1,0,+1\,}
ただし −1 と +1 の両端を含む間の実軸の部分は arcsec の主シートと他のシートの間の cut である;
arccsc
z
=
arcsin
1
z
z
≠
−
1
,
0
,
+
1
{\displaystyle \operatorname {arccsc} z=\arcsin {\frac {1}{z}}\quad z\neq -1,0,+1\,}
これは arcsec と同じ cut を持つ。
対数を使った形 [ ]
これらの関数は複素対数関数 を使って表現することもできる。これらの関数の対数表現は三角関数の指数関数による表示を経由して初等的な証明が与えられ、その定義域 を複素平面 に自然に拡張する。
arcsin
x
=
−
i
log
(
i
x
+
1
−
x
2
)
=
arccsc
1
x
arccos
x
=
i
log
(
x
−
i
1
−
x
2
)
=
π
2
+
i
log
(
i
x
+
1
−
x
2
)
=
π
2
−
arcsin
x
=
arcsec
1
x
arctan
x
=
1
2
i
(
log
(
1
−
i
x
)
−
log
(
1
+
i
x
)
)
=
arccot
1
x
arccot
x
=
1
2
i
(
log
(
1
−
i
x
)
−
log
(
1
+
i
x
)
)
=
arctan
1
x
arcsec
x
=
−
i
log
(
i
1
−
1
x
2
+
1
x
)
=
i
log
(
1
−
1
x
2
+
i
x
)
+
π
2
=
π
2
−
arccsc
x
=
arccos
1
x
arccsc
x
=
−
i
log
(
1
−
1
x
2
+
i
x
)
=
arcsin
1
x
{\displaystyle {\begin{aligned}\arcsin x&{}=-i\,\log \left(i\,x+{\sqrt {1-x^{2}}}\right)&{}=\operatorname {arccsc} {\frac {1}{x}}\\[10pt]\arccos x&{}=i\,\log \left(x-i\,{\sqrt {1-x^{2}}}\right)={\frac {\pi }{2}}\,+i\log \left(i\,x+{\sqrt {1-x^{2}}}\right)={\frac {\pi }{2}}-\arcsin x&{}=\operatorname {arcsec} {\frac {1}{x}}\\[10pt]\arctan x&{}={\frac {1}{2}}\,i\left(\log \left(1-i\,x\right)-\log \left(1+i\,x\right)\right)&{}=\operatorname {arccot} {\frac {1}{x}}\\[10pt]\operatorname {arccot} x&{}={\frac {1}{2}}\,i\left(\log \left(1-{\frac {i}{x}}\right)-\log \left(1+{\frac {i}{x}}\right)\right)&{}=\arctan {\frac {1}{x}}\\[10pt]\operatorname {arcsec} x&{}=-i\,\log \left(i\,{\sqrt {1-{\frac {1}{x^{2}}}}}+{\frac {1}{x}}\right)=i\,\log \left({\sqrt {1-{\frac {1}{x^{2}}}}}+{\frac {i}{x}}\right)+{\frac {\pi }{2}}={\frac {\pi }{2}}-\operatorname {arccsc} x&{}=\arccos {\frac {1}{x}}\\[10pt]\operatorname {arccsc} x&{}=-i\,\log \left({\sqrt {1-{\frac {1}{x^{2}}}}}+{\frac {i}{x}}\right)&{}=\arcsin {\frac {1}{x}}\end{aligned}}}
ここで注意しておきたい事は、複素対数関数における主値は、複素数の偏角部分 arg の主値の取り方に依存して決まる事である。それ故に、ここで示した対数表現における主値は、複素対数関数の主値を基準にすると、逆三角関数の主値 で述べた通常の主値と一致しない場合がある事に注意する必要がある。一致させたい場合は、対数部の位相をずらす事で対応できる。若し文献により異なる対数表現が与えられている樣な場合には、主値の範囲を異なる範囲で取る場合であると考えられるので、目的に応じて対数部の位相をずらす必要がある。
証明例 [ ]
θ
=
arcsin
x
{\displaystyle \theta = \arcsin x }
sin
(
θ
)
=
sin
(
arcsin
x
)
{\displaystyle \sin(\theta) = \sin(\arcsin x) }
sin
(
θ
)
=
x
{\displaystyle \sin(\theta) = x }
サインの指数関数による定義
e
i
ϕ
−
e
−
i
ϕ
2
i
=
sin
(
ϕ
)
{\displaystyle \frac{e^{i\phi} - e^{-i\phi}}{2i} = \sin(\phi) }
を用いて
e
i
θ
−
e
−
i
θ
2
i
=
x
{\displaystyle \frac{e^{i\theta} - e^{-i\theta}}{2i} = x }
を得る。
k
=
e
i
θ
{\displaystyle k=e^{i\,\theta} \, }
とする。すると
k
−
1
k
2
i
=
x
{\displaystyle \frac{k-\frac{1}{k}}{2i} = x}
k
−
1
k
=
2
i
x
{\displaystyle {k-\frac{1}{k}} = 2ix}
k
−
2
i
x
−
1
k
=
0
{\displaystyle {k -2ix -\frac{1}{k}} = 0}
k
2
−
2
i
k
x
−
1
=
0
{\displaystyle k^2-2\,i\,k\,x-1\,=\,0}
k
=
i
x
±
1
−
x
2
{\displaystyle k = ix \pm \sqrt{1-x^2} \, }
e
i
θ
=
i
x
±
1
−
x
2
{\displaystyle e^{i\theta} = ix \pm \sqrt{1-x^2} \, }
i
θ
=
log
(
i
x
±
1
−
x
2
)
{\displaystyle i \theta = \log \left(ix \pm \sqrt{1-x^2}\right) \, }
θ
=
−
i
log
(
i
x
±
1
−
x
2
)
{\displaystyle \theta = -i \log \left(ix \pm \sqrt{1-x^2}\right) \, }
(正の分枝を選ぶ)
θ
=
arcsin
x
=
−
i
log
(
i
x
+
1
−
x
2
)
{\displaystyle \theta = \arcsin x = -i \log \left(ix + \sqrt{1-x^2}\right) \, }
証明例 (variant 2) [ ]
θ
=
arcsin
x
{\displaystyle \theta = \arcsin x }
e
i
θ
=
cos
(
θ
)
+
i
sin
(
θ
)
{\displaystyle e^{i\theta}= \cos (\theta) + i \sin(\theta)}
自然対数を取り、−i を掛け、arcsin x を θ に代入する。
arcsin
x
=
−
i
log
(
cos
(
arcsin
x
)
+
i
sin
(
arcsin
x
)
)
{\displaystyle \arcsin x= -i \log(\cos (\arcsin x) + i \sin(\arcsin x))}
arcsin
x
=
−
i
log
(
1
−
x
2
+
i
x
)
{\displaystyle \arcsin x= -i \log(\sqrt{1-x^2} + i x)}
複素平面 における逆三角関数
arcsin
(
z
)
{\displaystyle
\arcsin(z)
}
arccos
(
z
)
{\displaystyle
\arccos(z)
}
arctan
(
z
)
{\displaystyle
\arctan(z)
}
arccot
(
z
)
{\displaystyle \operatorname {arccot}(z)}
arcsec
(
z
)
{\displaystyle \operatorname {arcsec}(z)}
arccsc
(
z
)
{\displaystyle \operatorname {arccsc}(z)}
部分分数展開 [ ]
数学において、三角関数 と双曲線関数 について無限乗積 を用いた以下の恒等式が成立する。
sin
(
π
z
)
=
π
z
∏
n
=
1
∞
(
1
−
z
2
n
2
)
{\displaystyle \sin{({\pi}z)}={\pi}z\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{n^2}\right)}}
cos
(
π
z
)
=
∏
n
=
1
∞
(
1
−
z
2
(
n
−
1
2
)
2
)
{\displaystyle \cos{({\pi}z)}=\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{(n-\frac{1}{2})^2}\right)}}
sinh
(
π
z
)
=
sin
(
π
i
z
)
i
=
π
z
∏
n
=
1
∞
(
1
+
z
2
n
2
)
{\displaystyle \sinh{({\pi}z)}=\frac{\sin({\pi}iz)}{i}={\pi}z\prod_{n=1}^{\infty}{\left(1+\frac{z^2}{n^2}\right)}}
cosh
(
π
z
)
=
cos
(
π
i
z
)
=
∏
n
=
1
∞
(
1
+
z
2
(
n
−
1
2
)
2
)
{\displaystyle \cosh{({\pi}z)}=\cos({\pi}iz)=\prod_{n=1}^{\infty}{\left(1+\frac{z^2}{(n-\frac{1}{2})^2}\right)}}
初等的な考察 [ ]
sin
(
π
z
)
{\displaystyle \sin({\pi}z)}
は複素平面全体で正則(マクローリン展開 の収束半径 が無限大 )であるから無限次の多項式 で表される。
sin
(
π
z
)
{\displaystyle \sin({\pi}z)}
の零点は
z
=
±
n
{\displaystyle z={\pm}n}
であるから、
c
{\displaystyle c}
を定数として
sin
(
π
z
)
=
c
z
∏
n
=
1
∞
(
1
+
z
n
)
(
1
−
z
n
)
=
c
z
∏
n
=
1
∞
(
1
−
z
2
n
2
)
{\displaystyle \sin({\pi}z)=cz\prod_{n=1}^{\infty}{\left(1+\frac{z}{n}\right)}{\left(1-\frac{z}{n}\right)}=cz\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{n^2}\right)}}
微分して
π
cos
(
π
z
)
=
c
∏
n
=
1
∞
(
1
−
z
2
n
2
)
+
c
z
d
d
z
∏
n
=
1
∞
(
1
−
z
2
n
2
)
{\displaystyle \pi\cos({\pi}z)=c\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{n^2}\right)}+cz\frac{d}{dz}\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{n^2}\right)}}
z
=
0
{\displaystyle z=0}
を代入すれば
c
=
π
{\displaystyle c=\pi}
を得る。同様に
cos
(
π
z
)
=
c
′
∏
n
=
1
∞
(
1
+
z
n
−
1
2
)
(
1
−
z
n
−
1
2
)
{\displaystyle \cos({\pi}z)=c'\prod_{n=1}^{\infty}{\left(1+\frac{z}{n-\frac{1}{2}}\right)}{\left(1-\frac{z}{n-\frac{1}{2}}\right)}}
z
=
0
{\displaystyle z=0}
を代入すれば
c
′
=
1
{\displaystyle c'=1}
を得る。但し、これは厳密な証明ではない。何故ならば
z
→
∞
{\displaystyle z\to\infty}
を考慮していないからである。同じ方法で
e
z
{\displaystyle e^z}
の無限乗積展開を求めようとすると失敗するであろう。一般にはワイエルシュトラスの因数分解定理 (Weierstrass factorization theorem)が必要になる。
証明 [ ]
正弦関数の乗積展開を証明するには
f
(
z
)
=
π
z
∏
n
=
1
∞
(
1
−
z
2
n
2
)
sin
(
π
z
)
{\displaystyle f(z)=\frac{{\pi}z\prod_{n=1}^{\infty}{\left(1-\frac{z^2}{n^2}\right)}}{\sin({\pi}z)}}
として、恒等的に
f
(
z
)
=
1
{\displaystyle f(z)=1}
であることを示せば良い。そのために
f
(
z
)
{\displaystyle f(z)}
の対数微分
d
d
z
log
f
(
z
)
=
1
z
+
∑
n
=
1
∞
(
1
n
+
z
−
1
n
−
z
)
−
π
cos
π
z
sin
π
z
{\displaystyle \frac{d}{dz}\log{f(z)}=\frac{1}{z}+\sum_{n=1}^{\infty}{\left(\frac{1}{n+z}-\frac{1}{n-z}\right)}-\pi\frac{\cos{{\pi}z}}{\sin{{\pi}z}}}
を考える。余接関数の部分分数展開
π
cot
π
z
=
1
z
+
∑
n
=
1
∞
2
z
z
2
−
n
2
{\displaystyle \pi\cot{{\pi}z}=\frac{1}{z}+\sum_{n=1}^{\infty}{\frac{2z}{z^2-n^2}}}
を用いて
d
d
z
log
f
(
z
)
=
0
{\displaystyle \frac{d}{dz}\log{f(z)}=0}
となるから
f
(
z
)
{\displaystyle f(z)}
は定数であり、
f
(
z
)
=
f
(
0
)
=
1
{\displaystyle f(z)=f(0)=1}
が得られる。
ウォリス積 [ ]
正弦関数の乗積展開
π
z
sin
π
z
=
∏
n
=
1
∞
(
n
2
n
2
−
z
2
)
{\displaystyle \frac{\pi{z}}{\sin\pi{z}}=\prod_{n=1}^{\infty}{\left(\frac{n^2}{n^2-z^2}\right)}}
に
z
=
1
2
{\displaystyle z=\textstyle\frac{1}{2}}
を代入すると
π
2
=
∏
n
=
1
∞
4
n
2
4
n
2
−
1
=
∏
n
=
1
∞
(
2
n
)
2
(
2
n
−
1
)
(
2
n
+
1
)
{\displaystyle \frac{\pi}{2}=\prod_{n=1}^{\infty}\frac{4n^2}{4n^2-1}=\prod_{n=1}^{\infty}\frac{(2n)^2}{(2n-1)(2n+1)}}
が得られる。これはウォリス積 と呼ばれるものである。
無限乗積展開 [ ]
数学において、三角関数 は以下のように部分分数に展開 される。
π
cot
π
z
=
lim
N
→
∞
∑
n
=
−
N
N
1
z
+
n
=
1
z
+
∑
n
=
1
∞
2
z
z
2
−
n
2
{\displaystyle \pi\cot{{\pi}z}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{1}{z+n}=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{2z}{z^2-n^2}}
π
tan
π
z
=
lim
N
→
∞
∑
n
=
−
N
N
−
1
z
+
1
2
+
n
=
−
∑
n
=
0
∞
2
z
z
2
−
(
n
+
1
2
)
2
{\displaystyle \pi\tan{{\pi}z}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{-1}{z+\textstyle\frac{1}{2}+n}=-\sum_{n=0}^{\infty}\frac{2z}{z^2-\left(n+\textstyle\frac{1}{2}\right)^2}}
π
sin
π
z
=
lim
N
→
∞
∑
n
=
−
N
N
(
−
1
)
n
z
+
n
=
1
z
+
∑
n
=
1
∞
(
−
1
)
n
2
z
z
2
−
n
2
{\displaystyle \frac{\pi}{\sin{\pi}z}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{(-1)^{n}}{z+n}=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{(-1)^{n}2z}{z^2-n^2}}
π
cos
π
z
=
lim
N
→
∞
∑
n
=
−
N
N
(
−
1
)
n
z
+
1
2
+
n
=
−
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
z
2
−
(
n
+
1
2
)
2
{\displaystyle \frac{\pi}{\cos{{\pi}z}}=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{(-1)^{n}}{z+\frac{1}{2}+n}=-\sum_{n=0}^{\infty}\frac{(-1)^{n}(2n+1)}{z^2-\left(n+\frac{1}{2}\right)^2}}
sin
x
x
=
∏
k
=
1
∞
cos
x
2
k
{\displaystyle \frac{\sin x}{x} = \prod_{k = 1}^{\infty} \cos \frac{x}{2^k} }
s
i
n
c
(
x
)
=
∏
k
=
1
∞
(
1
−
x
2
k
2
)
{\displaystyle \mathrm{sinc}(x) = \prod_{k = 1}^{\infty} \left( 1 - \frac{x^2}{k^2} \right) }
証明 [ ]
初めに余接関数の部分分数展開について示す。そのために
f
(
z
)
=
π
cot
π
z
−
(
1
z
+
∑
n
=
1
∞
2
z
z
2
−
n
2
)
{\displaystyle f(z)=\pi\cot{{\pi}z}-\left(\frac{1}{z}+\sum_{n=1}^{\infty}{\frac{2z}{z^2-n^2}}\right)}
として、恒等的に
f
(
z
)
=
0
{\displaystyle f(z)=0}
であることを確かめる。
z
→
0
{\displaystyle z\to0}
の極限において
π
cot
π
z
=
π
cos
π
z
sin
π
z
=
π
1
+
O
(
z
2
)
π
z
+
O
(
z
3
)
=
1
z
+
O
(
z
)
{\displaystyle \pi\cot{{\pi}z}=\pi\frac{\cos{{\pi}z}}{\sin{{\pi}z}}=\pi\frac{1+\mathcal{O}(z^2)}{{\pi}z+\mathcal{O}(z^3)}=\frac{1}{z}+\mathcal{O}(z)}
であるから
f
(
0
)
{\displaystyle f(0)}
の極 は除去され、
f
(
z
+
1
)
=
f
(
z
)
{\displaystyle f(z+1)=f(z)}
であるから実軸上に並ぶ他の極も除去される。従って、
f
(
z
)
{\displaystyle f(z)}
は
|
ℑ
z
|
<
∞
{\displaystyle |\image{z}|<\infty}
において有界 である。
z
=
x
+
i
y
{\displaystyle z = x + iy}
と書き
lim
y
→
∞
|
π
cot
π
z
|
=
lim
y
→
∞
|
cos
π
x
cosh
π
y
+
i
sin
π
x
sinh
π
y
sin
π
x
cosh
π
y
+
i
cos
π
x
sinh
π
y
|
≤
lim
y
→
∞
|
cos
π
x
cosh
π
y
+
i
sin
π
x
cosh
π
y
sin
π
x
sinh
π
y
+
i
cos
π
x
sinh
π
y
|
=
lim
y
→
∞
|
cos
π
x
+
i
sin
π
x
sin
π
x
+
i
cos
π
x
|
=
1
{\displaystyle \begin{align}\lim_{y\to\infty}\left|\pi\cot{{\pi}z}\right|
&=\lim_{y\to\infty}\left|\frac{\cos{{\pi}x}\cosh{{\pi}y}+i\sin{{\pi}x}\sinh{{\pi}y}}{\sin{{\pi}x}\cosh{{\pi}y}+i\cos{{\pi}x}\sinh{{\pi}y}}\right|\\
&\le\lim_{y\to\infty}\left|\frac{\cos{{\pi}x}\cosh{{\pi}y}+i\sin{{\pi}x}\cosh{{\pi}y}}{\sin{{\pi}x}\sinh{{\pi}y}+i\cos{{\pi}x}\sinh{{\pi}y}}\right|\\
&=\lim_{y\to\infty}\left|\frac{\cos{\pi}x+i\sin{\pi}x}{\sin{\pi}x+i\cos{\pi}x}\right|\\
&=1\\
\end{align}}
|
x
|
≤
1
2
<
|
y
|
{\displaystyle |x|\le\textstyle\frac{1}{2}<|y|}
を仮定すれば
|
∑
n
=
1
∞
2
z
z
2
−
n
2
|
≤
∑
n
=
1
∞
|
2
(
x
+
i
y
)
x
2
−
y
2
+
2
i
x
y
−
n
2
|
≤
∑
n
=
1
∞
|
1
+
2
|
y
|
n
2
+
|
y
|
2
−
1
4
|
≤
∫
n
=
0
∞
|
1
+
2
|
y
|
n
2
+
|
y
|
2
−
1
4
|
d
n
{\displaystyle \begin{align}\left|\sum_{n=1}^{\infty}\frac{2z}{z^2-n^2}\right|
&\le\sum_{n=1}^{\infty}\left|\frac{2(x+iy)}{x^2-y^2+2ixy-n^2}\right|\\
&\le\sum_{n=1}^{\infty}\left|\frac{1+2|y|}{n^2+|y|^2-\frac{1}{4}}\right|\\
&\le\int_{n=0}^{\infty}\left|\frac{1+2|y|}{n^2+|y|^2-\frac{1}{4}}\right|dn\\
\end{align}}
tan
θ
=
n
|
y
|
2
−
1
4
{\displaystyle \tan\theta=\frac{n}{\sqrt{|y|^2-\frac{1}{4}}}}
の置換により
|
∑
n
=
1
∞
2
z
z
2
−
n
2
|
≤
1
+
2
|
y
|
|
y
|
2
−
1
4
⋅
π
2
{\displaystyle \left|\sum_{n=1}^{\infty}\frac{2z}{z^2-n^2}\right|\le\frac{1+2|y|}{\sqrt{|y|^2-\frac{1}{4}}}\cdot\frac{\pi}{2}}
となるから、
f
(
z
)
{\displaystyle f(z)}
は
|
ℜ
z
|
≤
1
2
{\displaystyle |\real{z}|\le\textstyle\frac{1}{2}}
において有界であるが、
f
(
z
+
1
)
=
f
(
z
)
{\displaystyle f(z+1)=f(z)}
であるから複素平面全体においても有界である。従って、リウヴィルの定理 により
f
(
z
)
=
f
(
0
)
=
0
{\displaystyle f(z)=f(0)=0}
である。
他の関数については
π
tan
π
z
=
−
π
cot
π
(
z
+
1
2
)
=
lim
N
→
∞
∑
n
=
−
N
N
−
1
z
+
1
2
+
n
=
−
∑
n
=
0
∞
2
z
z
2
−
(
n
+
1
2
)
2
{\displaystyle \begin{align}\pi\tan{{\pi}z}
&=-\pi\cot{{\pi}\left(z+\textstyle\frac{1}{2}\right)}\\
&=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{-1}{z+\textstyle\frac{1}{2}+n}=-\sum_{n=0}^{\infty}\frac{2z}{z^2-\left(n+\textstyle\frac{1}{2}\right)^2}\\
\end{align}}
cot
θ
+
tan
θ
=
cos
2
θ
+
sin
2
θ
sin
θ
cos
θ
=
2
sin
2
θ
{\displaystyle \cot\theta+\tan\theta=\frac{\cos^2\theta+\sin^2\theta}{\sin\theta\cos\theta}=\frac{2}{\sin2\theta}}
π
sin
π
z
=
1
2
cot
θ
2
+
1
2
tan
θ
2
=
lim
N
→
∞
1
2
∑
n
=
−
N
N
2
z
+
2
n
−
1
2
∑
n
=
−
N
N
2
z
+
2
n
+
1
=
lim
N
→
∞
∑
n
=
−
N
N
(
−
1
)
n
z
+
n
=
1
z
+
∑
n
=
1
∞
(
−
1
)
n
2
z
z
2
−
n
2
{\displaystyle \begin{align}\frac{\pi}{\sin{\pi}z}
&=\frac{1}{2}\cot\frac{\theta}{2}+\frac{1}{2}\tan\frac{\theta}{2}\\
&=\lim_{N\to\infty}\frac{1}{2}\sum_{n=-N}^{N}\frac{2}{z+2n}-\frac{1}{2}\sum_{n=-N}^{N}\frac{2}{z+2n+1}\\
&=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{(-1)^{n}}{z+n}=\frac{1}{z}+\sum_{n=1}^{\infty}\frac{(-1)^{n}2z}{z^2-n^2}\\
\end{align}}
π
cos
π
z
=
π
sin
π
(
z
+
1
2
)
=
lim
N
→
∞
∑
n
=
−
N
N
(
−
1
)
n
z
+
1
2
+
n
=
−
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
z
2
−
(
n
+
1
2
)
2
{\displaystyle \begin{align}\frac{\pi}{\cos{{\pi}z}}
&=\frac{\pi}{\sin{{\pi}\left(z+\frac{1}{2}\right)}}\\
&=\lim_{N\to\infty}\sum_{n=-N}^{N}\frac{(-1)^{n}}{z+\frac{1}{2}+n}=-\sum_{n=0}^{\infty}\frac{(-1)^n(2n+1)}{z^2-\left(n+\frac{1}{2}\right)^2}\\
\end{align}}
円周率の公式 [ ]
余接関数の部分分数展開の両辺を微分 して比較することにより
∑
n
=
1
∞
1
n
2
=
π
2
6
{\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}}
が導かれる。(→バーゼル問題 )
lim
z
→
0
d
d
z
π
cot
π
z
=
−
π
2
sin
2
π
z
=
−
π
2
(
π
z
−
1
6
(
π
z
)
3
+
O
(
z
5
)
)
2
=
−
π
2
(
π
z
)
2
−
1
3
(
π
z
)
4
+
O
(
z
6
)
=
−
1
z
2
−
1
3
π
2
+
O
(
z
2
)
{\displaystyle \begin{align}\lim_{z\to0}\frac{d}{dz}\pi\cot\pi{z}
&=-\frac{\pi^2}{\sin^2\pi{z}}\\
&=-\frac{\pi^2}{\left(\pi{z}-\frac{1}{6}(\pi{z})^3+O(z^5)\right)^2}\\
&=-\frac{\pi^2}{(\pi{z})^2-\frac{1}{3}(\pi{z})^4+O(z^6)}\\
&=-\frac{1}{z^2}-\frac{1}{3}\pi^2+O(z^2)\\
\end{align}}
lim
z
→
0
d
d
z
(
1
z
+
∑
n
=
1
∞
2
z
z
2
−
n
2
)
=
−
1
z
2
+
∑
n
=
1
∞
2
z
2
−
n
2
−
∑
n
=
1
∞
4
z
2
(
z
2
−
n
2
)
2
=
−
1
z
2
−
∑
n
=
1
∞
2
n
2
+
O
(
z
2
)
{\displaystyle \begin{align}\lim_{z\to0}\frac{d}{dz}\left(\frac{1}{z}+\sum_{n=1}^{\infty}\frac{2z}{z^2-n^2}\right)
&=-\frac{1}{z^2}+\sum_{n=1}^{\infty}\frac{2}{z^2-n^2}-\sum_{n=1}^{\infty}\frac{4z^2}{(z^2-n^2)^2}\\
&=-\frac{1}{z^2}-\sum_{n=1}^{\infty}\frac{2}{n^2}+O(z^2)\\
\end{align}}
連分数 [ ]
アークタンジェントの冪級数の 2 つの代わりはこれらの一般化連分数 である:
arctan
z
=
z
1
+
(
1
z
)
2
3
−
1
z
2
+
(
3
z
)
2
5
−
3
z
2
+
(
5
z
)
2
7
−
5
z
2
+
(
7
z
)
2
9
−
7
z
2
+
⋱
{\displaystyle
\arctan z=\cfrac{z} {1+\cfrac{(1z)^2} {3-1z^2+\cfrac{(3z)^2} {5-3z^2+\cfrac{(5z)^2} {7-5z^2+\cfrac{(7z)^2} {9-7z^2+\ddots}}}}}
}
=
z
1
+
(
1
z
)
2
3
+
(
2
z
)
2
5
+
(
3
z
)
2
7
+
(
4
z
)
2
9
+
⋱
{\displaystyle =\cfrac{z} {1+\cfrac{(1z)^2} {3+\cfrac{(2z)^2} {5+\cfrac{(3z)^2} {7+\cfrac{(4z)^2} {9+\ddots\,}}}}}\,
}
これらの 2 番目は cut 複素平面において有効である。−i から虚軸を下がって無限の点までと i から虚軸を上がって無限の点までの 2 つの cut がある。それは −1 から 1 まで走る実数に対して最もよく働く。部分分母は奇自然数であり部分分子は(最初の後)単に (nz )2 であり各完全平方が一度現れる。1 つ目はレオンハルト・オイラー によって開発された。2 つ目はガウスの超幾何級数 を利用してカール・フリードリヒ・ガウス (Carl Friedrich Gauss ) によって開発された。
微積分 [ ]
導関数 [ ]
三角関数 [ ]
三角関数の微積分は、以下の表のとおりである。ただし、これらの結果には様々な(一見同じには見えない)表示が存在し、この表における表示はいくつかの例であることに注意されたい。
f
(
x
)
{\displaystyle f(x)}
f
′
(
x
)
{\displaystyle f'(x)}
∫
f
(
x
)
d
x
{\displaystyle \int f(x)\,dx}
sin
x
{\displaystyle \sin x}
cos
x
{\displaystyle \cos x}
−
cos
x
+
C
{\displaystyle -\cos x+C}
cos
x
{\displaystyle \cos x}
−
sin
x
{\displaystyle -\sin x}
sin
x
+
C
{\displaystyle \sin x+C}
tan
x
{\displaystyle \tan x}
sec
2
x
=
1
+
tan
2
x
{\displaystyle \sec^2 x=1+\tan^2 x}
−
ln
|
cos
x
|
+
C
{\displaystyle -\ln \left |\cos x\right| +C}
cot
x
{\displaystyle \cot x}
−
csc
2
x
=
−
(
1
+
cot
2
x
)
{\displaystyle -\csc^2 x=-(1+\cot^2 x)}
ln
|
sin
x
|
+
C
{\displaystyle \ln \left |\sin x\right| +C}
sec
x
{\displaystyle \sec x}
sec
x
tan
x
{\displaystyle \sec x\tan x}
ln
|
sec
x
+
tan
x
|
+
C
=
gd
−
1
x
+
C
{\displaystyle \ln \left| \sec x+\tan x\right| +C = \operatorname{gd}^{-1}x +C}
csc
x
{\displaystyle \csc x}
−
csc
x
cot
x
{\displaystyle -\csc x\cot x}
−
ln
|
csc
x
+
cot
x
|
+
C
=
ln
|
tan
x
2
|
+
C
{\displaystyle -\ln \left| \csc x+\cot x\right| +C = \ln \left |\tan \frac{x}{2} \right| + C}
ただし、gd−1 x はグーデルマン関数 の逆関数 である。
逆三角関数 [ ]
z の複素数値の導関数 は次の通りである:
d
d
z
arcsin
z
=
1
1
−
z
2
;
z
≠
−
1
,
+
1
d
d
z
arccos
z
=
−
1
1
−
z
2
;
z
≠
−
1
,
+
1
d
d
z
arctan
z
=
1
1
+
z
2
;
z
≠
−
i
,
+
i
d
d
z
arccot
z
=
−
1
1
+
z
2
;
z
≠
−
i
,
+
i
d
d
z
arcsec
z
=
1
z
2
1
−
z
−
2
;
z
≠
−
1
,
0
,
+
1
d
d
z
arccsc
z
=
−
1
z
2
1
−
z
−
2
;
z
≠
−
1
,
0
,
+
1
{\displaystyle {\begin{aligned}{\frac {d}{dz}}\arcsin z&{}={\frac {1}{\sqrt {1-z^{2}}}};\quad z\neq -1,+1\\{\frac {d}{dz}}\arccos z&{}={\frac {-1}{\sqrt {1-z^{2}}}};\quad z\neq -1,+1\\{\frac {d}{dz}}\arctan z&{}={\frac {1}{1+z^{2}}};\quad z\neq -i,+i\\{\frac {d}{dz}}\operatorname {arccot} z&{}={\frac {-1}{1+z^{2}}};\quad z\neq -i,+i\\{\frac {d}{dz}}\operatorname {arcsec} z&{}={\frac {1}{z^{2}\,{\sqrt {1-z^{-2}}}}};\quad z\neq -1,0,+1\\{\frac {d}{dz}}\operatorname {arccsc} z&{}={\frac {-1}{z^{2}\,{\sqrt {1-z^{-2}}}}};\quad z\neq -1,0,+1\end{aligned}}}
x が実数である場合のみ、以下の関係が成り立つ:
d
d
x
arcsec
x
=
1
|
x
|
x
2
−
1
;
|
x
|
>
1
d
d
x
arccsc
x
=
−
1
|
x
|
x
2
−
1
;
|
x
|
>
1
{\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arcsec} x&{}={\frac {1}{|x|\,{\sqrt {x^{2}-1}}}};\qquad |x|>1\\{\frac {d}{dx}}\operatorname {arccsc} x&{}={\frac {-1}{|x|\,{\sqrt {x^{2}-1}}}};\qquad |x|>1\end{aligned}}}
導出例: θ = arcsin x であれば:
d
arcsin
x
d
x
=
d
θ
d
sin
θ
=
d
θ
cos
θ
d
θ
=
1
cos
θ
=
1
1
−
sin
2
θ
=
1
1
−
x
2
{\displaystyle \frac{d \arcsin x}{dx} = \frac{d \theta}{d \sin \theta} = \frac{d \theta}{\cos \theta d \theta} = \frac{1} {\cos \theta} = \frac{1} {\sqrt{1-\sin^2 \theta}} = \frac{1}{\sqrt{1-x^2}}}
双曲線関数 [ ]
d
d
x
sinh
(
x
)
=
cosh
(
x
)
{\displaystyle \frac{{\rm d}}{{\rm d}x}\sinh(x) = \cosh(x) \,}
d
d
x
cosh
(
x
)
=
sinh
(
x
)
{\displaystyle \frac{{\rm d}}{{\rm d}x}\cosh(x) = \sinh(x) \,}
d
d
x
tanh
(
x
)
=
1
−
tanh
2
(
x
)
=
sech
2
(
x
)
=
1
cosh
2
(
x
)
{\displaystyle \frac{{\rm d}}{{\rm d}x}\tanh(x) = 1 - \tanh^2(x) = \operatorname{sech}^2(x) = \frac{1}{\cosh^2(x)} \,}
d
d
x
coth
(
x
)
=
1
−
coth
2
(
x
)
=
−
csch
2
(
x
)
=
−
1
sinh
2
(
x
)
{\displaystyle \frac{{\rm d}}{{\rm d}x}\coth(x) = 1 - \coth^2(x) = -\operatorname{csch}^2(x) = -\frac{1}{\sinh^2(x)} \,}
d
d
x
csch
(
x
)
=
−
coth
(
x
)
csch
(
x
)
{\displaystyle \frac{{\rm d}}{{\rm d}x}\operatorname{csch}(x) = - \coth(x)\ \operatorname{csch}(x)\,}
d
d
x
sech
(
x
)
=
−
tanh
(
x
)
sech
(
x
)
{\displaystyle \frac{{\rm d}}{{\rm d}x}\operatorname{sech}(x) = - \tanh(x)\ \operatorname{sech}(x)\,}
したがって、 sinh x と cosh x はいずれも二階の線型微分方程式
d
2
d
x
2
y
(
x
)
=
y
(
x
)
{\displaystyle {{\rm d}^2 \over {\rm d}x^2} y(x) = y(x)}
の解であり、この微分方程式の基本解系の一つになる。
逆双曲線関数 [ ]
d
d
x
arsinh
x
=
1
1
+
x
2
d
d
x
arcosh
x
=
1
x
2
−
1
d
d
x
artanh
x
=
1
1
−
x
2
d
d
x
arcoth
x
=
1
1
−
x
2
d
d
x
arsech
x
=
−
1
x
(
x
+
1
)
1
−
x
1
+
x
d
d
x
arcsch
x
=
−
1
x
2
1
+
1
x
2
{\displaystyle
\begin{align}
\frac{d}{dx} \operatorname{arsinh}\, x & {}= \frac{1}{\sqrt{1+x^2}}\\
\frac{d}{dx} \operatorname{arcosh}\, x & {}= \frac{1}{\sqrt{x^2-1}}\\
\frac{d}{dx} \operatorname{artanh}\, x & {}= \frac{1}{1-x^2}\\
\frac{d}{dx} \operatorname{arcoth}\, x & {}= \frac{1}{1-x^2}\\
\frac{d}{dx} \operatorname{arsech}\, x & {}= \frac{-1}{x(x+1)\,\sqrt{\frac{1-x}{1+x}}}\\
\frac{d}{dx} \operatorname{arcsch}\, x & {}= \frac{-1}{x^2\,\sqrt{1+\frac{1}{x^2}}}\\
\end{align}}
実数x に対して、
d
d
x
arsech
x
=
∓
1
x
1
−
x
2
;
ℜ
{
x
}
≷
0
d
d
x
arcsch
x
=
∓
1
x
1
+
x
2
;
ℜ
{
x
}
≷
0
{\displaystyle
\begin{align}
\frac{d}{dx} \operatorname{arsech}\, x & {}= \frac{\mp 1}{x\,\sqrt{1-x^2}}; \qquad \Re\{x\} \gtrless 0\\
\frac{d}{dx} \operatorname{arcsch}\, x & {}= \frac{\mp 1}{x\,\sqrt{1+x^2}}; \qquad \Re\{x\} \gtrless 0
\end{align}}
微分法 の例:θ = arsinh x とおくと、
d
arsinh
x
d
x
=
d
θ
d
sinh
θ
=
1
cosh
θ
=
1
1
+
sinh
2
θ
=
1
1
+
x
2
{\displaystyle \frac{d\,\operatorname{arsinh}\, x}{dx} = \frac{d \theta}{d \sinh \theta} = \frac{1} {\cosh \theta} = \frac{1} {\sqrt{1+\sinh^2 \theta}} = \frac{1}{\sqrt{1+x^2}}}
グーデルマン関数 [ ]
グーデルマン関数とその逆関数の微分 は次のとおりである。
d
d
x
g
d
x
=
s
e
c
h
x
;
d
d
x
gd
−
1
x
=
sec
x
.
{\displaystyle \frac{d}{dx}\;\mathrm{gd}\,x=\mathrm{sech}\, x;
\quad \frac{d}{dx}\;\operatorname{gd}^{-1}\,x=\sec x.}
定積分 [ ]
逆三角関数 [ ]
導関数を積分し一点で値を固定すると逆三角関数の定積分としての表現が得られる:
arcsin
x
=
∫
0
x
1
1
−
z
2
d
z
,
|
x
|
≤
1
arccos
x
=
∫
x
1
1
1
−
z
2
d
z
,
|
x
|
≤
1
arctan
x
=
∫
0
x
1
z
2
+
1
d
z
,
arccot
x
=
∫
x
∞
1
z
2
+
1
d
z
,
arcsec
x
=
∫
1
x
1
z
z
2
−
1
d
z
,
x
≥
1
arcsec
x
=
π
+
∫
x
−
1
1
z
z
2
−
1
d
z
,
x
≤
−
1
arccsc
x
=
∫
x
∞
1
z
z
2
−
1
d
z
,
x
≥
1
arccsc
x
=
∫
−
∞
x
1
z
z
2
−
1
d
z
,
x
≤
−
1
{\displaystyle {\begin{aligned}\arcsin x&{}=\int _{0}^{x}{\frac {1}{\sqrt {1-z^{2}}}}\,dz,\qquad |x|\leq 1\\\arccos x&{}=\int _{x}^{1}{\frac {1}{\sqrt {1-z^{2}}}}\,dz,\qquad |x|\leq 1\\\arctan x&{}=\int _{0}^{x}{\frac {1}{z^{2}+1}}\,dz,\\\operatorname {arccot} x&{}=\int _{x}^{\infty }{\frac {1}{z^{2}+1}}\,dz,\\\operatorname {arcsec} x&{}=\int _{1}^{x}{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz,\qquad x\geq 1\\\operatorname {arcsec} x&{}=\pi +\int _{x}^{-1}{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz,\qquad x\leq -1\\\operatorname {arccsc} x&{}=\int _{x}^{\infty }{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz,\qquad x\geq 1\\\operatorname {arccsc} x&{}=\int _{-\infty }^{x}{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz,\qquad x\leq -1\end{aligned}}}
x が 1 に等しいとき、制限された定義域の積分は広義積分 である。
∫
0
∞
s
i
n
c
(
x
)
d
x
=
1
2
,
∫
−
∞
∞
s
i
n
c
(
x
)
d
x
=
1
{\displaystyle \int_{0}^{\infty} \mathrm{sinc}(x) \, dx = \frac{1}{2}, \ \int_{-\infty}^{\infty} \mathrm{sinc}(x) \, dx = 1}
∫
0
∞
s
i
n
c
2
(
x
)
d
x
=
1
2
,
∫
−
∞
∞
s
i
n
c
2
(
x
)
d
x
=
1
(
s
i
n
c
2
(
x
)
=
{
s
i
n
c
(
x
)
}
2
)
{\displaystyle \int_{0}^{\infty} \mathrm{sinc}^2(x) \, dx = \frac{1}{2}, \ \int_{-\infty}^{\infty} \mathrm{sinc}^2(x) \, dx = 1 \quad \left(\mathrm{sinc}^2(x) = \{\mathrm{sinc}(x)\}^2 \right)}
∫
0
∞
|
s
i
n
c
(
x
)
|
d
x
=
∫
−
∞
∞
|
s
i
n
c
(
x
)
|
d
x
=
∞
{\displaystyle \int_{0}^{\infty} | \mathrm{sinc}(x) | \, dx = \int_{-\infty}^{\infty} | \mathrm{sinc}(x) | \, dx = \infty}
不定積分 [ ]
S
i
(
x
)
=
∫
0
x
sin
t
t
d
t
=
∑
k
=
0
∞
(
−
1
)
k
x
2
k
+
1
(
2
k
+
1
)
(
2
k
+
1
)
!
{\displaystyle \mathrm{Si}(x) = \int_{0}^{x} \frac{\sin t}{t} \, dt = \sum_{k = 0}^{\infty} \frac{ (-1)^k x^{2k+1} }{ (2k+1)(2k+1)! }}
(非正規化)sinc関数の不定積分を正弦積分 と呼び、
S
i
(
x
)
{\displaystyle \mathrm{Si}(x) \,}
で表す。
S
i
(
x
)
{\displaystyle \mathrm{Si}(x) \,}
は特殊関数 である。
原始関数の一覧 [ ]
以下の全ての記述において、a は0でない実数とする。また、C は積分定数 とする。
三角関数の原始関数 [ ]
∫
sin
a
x
d
x
=
−
1
a
cos
a
x
+
C
{\displaystyle \int \sin ax\;\mathrm{d}x = -\frac{1}{a}\cos ax+C}
∫
cos
a
x
d
x
=
1
a
sin
a
x
+
C
{\displaystyle \int \cos ax\;\mathrm{d}x = \frac{1}{a}\sin ax+C}
∫
tan
a
x
d
x
=
−
1
a
ln
|
cos
a
x
|
+
C
=
1
a
ln
|
sec
a
x
|
+
C
{\displaystyle \int\tan ax\;\mathrm{d}x = -\frac{1}{a}\ln|\cos ax|+C = \frac{1}{a}\ln|\sec ax|+C\,\!}
∫
cot
a
x
d
x
=
1
a
ln
|
sin
a
x
|
+
C
{\displaystyle \int\cot ax\;\mathrm{d}x = \frac{1}{a}\ln|\sin ax|+C\,\!}
∫
sec
a
x
d
x
=
1
a
ln
|
sec
a
x
+
tan
a
x
|
+
C
=
1
a
gd
−
1
(
a
x
)
+
C
gd
−
1
x
{\displaystyle \int \sec{ax} \, \mathrm{d}x = \frac{1}{a}\ln{\left| \sec{ax} + \tan{ax}\right|}+C = \frac{1}{a}\operatorname{gd}^{-1}(ax)+C\quad\operatorname{gd}^{-1}x}
:グーデルマン関数 の逆関数
∫
csc
a
x
d
x
=
−
1
a
ln
|
csc
a
x
+
cot
a
x
|
+
C
{\displaystyle \int \csc{ax} \, \mathrm{d}x = -\frac{1}{a}\ln{\left| \csc{ax}+\cot{ax}\right|}+C}
正弦関数のみを含む式の原始関数 [ ]
∫
sin
a
x
d
x
=
−
1
a
cos
a
x
+
C
{\displaystyle \int\sin ax\;\mathrm{d}x = -\frac{1}{a}\cos ax+C\,\!}
∫
sin
2
a
x
d
x
=
x
2
−
1
4
a
sin
2
a
x
+
C
=
x
2
−
1
2
a
sin
a
x
cos
a
x
+
C
{\displaystyle \int\sin^2 {ax}\;\mathrm{d}x = \frac{x}{2} - \frac{1}{4a} \sin 2ax +C= \frac{x}{2} - \frac{1}{2a} \sin ax\cos ax +C\!}
∫
sin
3
a
x
d
x
=
cos
3
a
x
12
a
−
3
cos
a
x
4
a
+
C
{\displaystyle \int\sin^3 {ax}\;\mathrm{d}x = \frac{\cos 3ax}{12a} - \frac{3 \cos ax}{4a} +C\!}
∫
x
sin
2
a
x
d
x
=
x
2
4
−
x
4
a
sin
2
a
x
−
1
8
a
2
cos
2
a
x
+
C
{\displaystyle \int x\sin^2 {ax}\;\mathrm{d}x = \frac{x^2}{4} - \frac{x}{4a} \sin 2ax - \frac{1}{8a^2} \cos 2ax +C\!}
∫
x
2
sin
2
a
x
d
x
=
x
3
6
−
(
x
2
4
a
−
1
8
a
3
)
sin
2
a
x
−
x
4
a
2
cos
2
a
x
+
C
{\displaystyle \int x^2\sin^2 {ax}\;\mathrm{d}x = \frac{x^3}{6} - \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax - \frac{x}{4a^2} \cos 2ax +C\!}
∫
sin
b
1
x
sin
b
2
x
d
x
=
sin
(
(
b
1
−
b
2
)
x
)
2
(
b
1
−
b
2
)
−
sin
(
(
b
1
+
b
2
)
x
)
2
(
b
1
+
b
2
)
+
C
(
|
b
1
|
≠
|
b
2
|
)
{\displaystyle \int\sin b_1x\sin b_2x\;\mathrm{d}x = \frac{\sin((b_1-b_2)x)}{2(b_1-b_2)}-\frac{\sin((b_1+b_2)x)}{2(b_1+b_2)}+C \qquad\mbox{(}|b_1|\neq|b_2|\mbox{)}\,\!}
∫
sin
n
a
x
d
x
=
−
sin
n
−
1
a
x
cos
a
x
n
a
+
n
−
1
n
∫
sin
n
−
2
a
x
d
x
(
n
>
2
)
{\displaystyle \int\sin^n {ax}\;\mathrm{d}x = -\frac{\sin^{n-1} ax\cos ax}{na} + \frac{n-1}{n}\int\sin^{n-2} ax\;\mathrm{d}x \qquad\mbox{(}n>2\mbox{)}\,\!}
∫
d
x
sin
a
x
=
1
a
ln
|
tan
a
x
2
|
+
C
{\displaystyle \int\frac{\mathrm{d}x}{\sin ax} = \frac{1}{a}\ln \left|\tan\frac{ax}{2}\right|+C}
∫
d
x
sin
n
a
x
=
cos
a
x
a
(
1
−
n
)
sin
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
sin
n
−
2
a
x
(
n
>
1
)
{\displaystyle \int\frac{\mathrm{d}x}{\sin^n ax} = \frac{\cos ax}{a(1-n) \sin^{n-1} ax}+\frac{n-2}{n-1}\int\frac{\mathrm{d}x}{\sin^{n-2}ax} \qquad\mbox{(}n>1\mbox{)}\,\!}
∫
x
sin
a
x
d
x
=
sin
a
x
a
2
−
x
cos
a
x
a
+
C
{\displaystyle \int x\sin ax\;\mathrm{d}x = \frac{\sin ax}{a^2}-\frac{x\cos ax}{a}+C\,\!}
∫
x
n
sin
a
x
d
x
=
−
x
n
a
cos
a
x
+
n
a
∫
x
n
−
1
cos
a
x
d
x
=
∑
k
=
0
2
k
≤
n
(
−
1
)
k
+
1
x
n
−
2
k
a
1
+
2
k
n
!
(
n
−
2
k
)
!
cos
a
x
+
∑
k
=
0
2
k
+
1
≤
n
(
−
1
)
k
x
n
−
1
−
2
k
a
2
+
2
k
n
!
(
n
−
2
k
−
1
)
!
sin
a
x
(
n
>
0
)
{\displaystyle \int x^n\sin ax\;\mathrm{d}x = -\frac{x^n}{a}\cos ax+\frac{n}{a}\int x^{n-1}\cos ax\;\mathrm{d}x = \sum_{k=0}^{2k\leq n} (-1)^{k+1} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \cos ax +\sum_{k=0}^{2k+1\leq n}(-1)^k \frac{x^{n-1-2k}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \sin ax \qquad\mbox{(}n>0\mbox{)}\,\!}
∫
−
a
2
a
2
x
2
sin
2
n
π
x
a
d
x
=
a
3
(
n
2
π
2
−
6
)
24
n
2
π
2
(
n
=
2
,
4
,
6...
)
{\displaystyle \int_{\frac{-a}{2}}^{\frac{a}{2}} x^2\sin^2 {\frac{n\pi x}{a}}\;\mathrm{d}x = \frac{a^3(n^2\pi^2-6)}{24n^2\pi^2} \qquad\mbox{(}n=2,4,6...\mbox{)}\,\!}
∫
sin
a
x
x
d
x
=
∑
n
=
0
∞
(
−
1
)
n
(
a
x
)
2
n
+
1
(
2
n
+
1
)
⋅
(
2
n
+
1
)
!
+
C
{\displaystyle \int\frac{\sin ax}{x} \mathrm{d}x = \sum_{n=0}^\infty (-1)^n\frac{(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!} +C\,\!}
∫
sin
a
x
x
n
d
x
=
−
sin
a
x
(
n
−
1
)
x
n
−
1
+
a
n
−
1
∫
cos
a
x
x
n
−
1
d
x
{\displaystyle \int\frac{\sin ax}{x^n} \mathrm{d}x = -\frac{\sin ax}{(n-1)x^{n-1}} + \frac{a}{n-1}\int\frac{\cos ax}{x^{n-1}} \mathrm{d}x\,\!}
∫
d
x
1
±
sin
a
x
=
1
a
tan
(
a
x
2
∓
π
4
)
+
C
{\displaystyle \int\frac{\mathrm{d}x}{1\pm\sin ax} = \frac{1}{a}\tan\left(\frac{ax}{2}\mp\frac{\pi}{4}\right)+C}
∫
x
d
x
1
+
sin
a
x
=
x
a
tan
(
a
x
2
−
π
4
)
+
2
a
2
ln
|
cos
(
a
x
2
−
π
4
)
|
+
C
{\displaystyle \int\frac{x\;\mathrm{d}x}{1+\sin ax} = \frac{x}{a}\tan\left(\frac{ax}{2} - \frac{\pi}{4}\right)+\frac{2}{a^2}\ln\left|\cos\left(\frac{ax}{2}-\frac{\pi}{4}\right)\right|+C}
∫
x
d
x
1
−
sin
a
x
=
x
a
cot
(
π
4
−
a
x
2
)
+
2
a
2
ln
|
sin
(
π
4
−
a
x
2
)
|
+
C
{\displaystyle \int\frac{x\;\mathrm{d}x}{1-\sin ax} = \frac{x}{a}\cot\left(\frac{\pi}{4} - \frac{ax}{2}\right)+\frac{2}{a^2}\ln\left|\sin\left(\frac{\pi}{4}-\frac{ax}{2}\right)\right|+C}
∫
sin
a
x
d
x
1
±
sin
a
x
=
±
x
+
1
a
tan
(
π
4
∓
a
x
2
)
+
C
{\displaystyle \int\frac{\sin ax\;\mathrm{d}x}{1\pm\sin ax} = \pm x+\frac{1}{a}\tan\left(\frac{\pi}{4}\mp\frac{ax}{2}\right)+C}
余弦関数のみを含む式の原始関数 [ ]
∫
cos
a
x
d
x
=
1
a
sin
a
x
+
C
{\displaystyle \int\cos ax\;\mathrm{d}x = \frac{1}{a}\sin ax+C\,\!}
∫
cos
2
a
x
d
x
=
x
2
+
1
4
a
sin
2
a
x
+
C
=
x
2
+
1
2
a
sin
a
x
cos
a
x
+
C
{\displaystyle \int\cos^2 {ax}\;\mathrm{d}x = \frac{x}{2} + \frac{1}{4a} \sin 2ax +C = \frac{x}{2} + \frac{1}{2a} \sin ax\cos ax +C\!}
∫
cos
n
a
x
d
x
=
cos
n
−
1
a
x
sin
a
x
n
a
+
n
−
1
n
∫
cos
n
−
2
a
x
d
x
(
n
>
0
)
{\displaystyle \int\cos^n ax\;\mathrm{d}x = \frac{\cos^{n-1} ax\sin ax}{na} + \frac{n-1}{n}\int\cos^{n-2} ax\;\mathrm{d}x \qquad\mbox{(}n>0\mbox{)}\,\!}
∫
x
cos
a
x
d
x
=
cos
a
x
a
2
+
x
sin
a
x
a
+
C
{\displaystyle \int x\cos ax\;\mathrm{d}x = \frac{\cos ax}{a^2} + \frac{x\sin ax}{a}+C\,\!}
∫
x
2
cos
2
a
x
d
x
=
x
3
6
+
(
x
2
4
a
−
1
8
a
3
)
sin
2
a
x
+
x
4
a
2
cos
2
a
x
+
C
{\displaystyle \int x^2\cos^2 {ax}\;\mathrm{d}x = \frac{x^3}{6} + \left( \frac {x^2}{4a} - \frac{1}{8a^3} \right) \sin 2ax + \frac{x}{4a^2} \cos 2ax +C\!}
∫
x
n
cos
a
x
d
x
=
x
n
sin
a
x
a
−
n
a
∫
x
n
−
1
sin
a
x
d
x
=
∑
k
=
0
2
k
+
1
≤
n
(
−
1
)
k
x
n
−
2
k
−
1
a
2
+
2
k
n
!
(
n
−
2
k
−
1
)
!
cos
a
x
+
∑
k
=
0
2
k
≤
n
(
−
1
)
k
x
n
−
2
k
a
1
+
2
k
n
!
(
n
−
2
k
)
!
sin
a
x
{\displaystyle \int x^n\cos ax\;\mathrm{d}x = \frac{x^n\sin ax}{a} - \frac{n}{a}\int x^{n-1}\sin ax\;\mathrm{d}x\,= \sum_{k=0}^{2k+1\leq n} (-1)^{k} \frac{x^{n-2k-1}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \cos ax +\sum_{k=0}^{2k\leq n}(-1)^{k} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \sin ax \!}
∫
cos
a
x
x
d
x
=
ln
|
a
x
|
+
∑
k
=
1
∞
(
−
1
)
k
(
a
x
)
2
k
2
k
⋅
(
2
k
)
!
+
C
{\displaystyle \int\frac{\cos ax}{x} \mathrm{d}x = \ln|ax|+\sum_{k=1}^\infty (-1)^k\frac{(ax)^{2k}}{2k\cdot(2k)!}+C\,\!}
∫
cos
a
x
x
n
d
x
=
−
cos
a
x
(
n
−
1
)
x
n
−
1
−
a
n
−
1
∫
sin
a
x
x
n
−
1
d
x
(
n
≠
1
)
{\displaystyle \int\frac{\cos ax}{x^n} \mathrm{d}x = -\frac{\cos ax}{(n-1)x^{n-1}}-\frac{a}{n-1}\int\frac{\sin ax}{x^{n-1}} \mathrm{d}x \qquad\mbox{(}n\neq 1\mbox{)}\,\!}
∫
d
x
cos
a
x
=
1
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
=
1
a
gd
−
1
(
a
x
)
+
C
{\displaystyle \int\frac{\mathrm{d}x}{\cos ax} = \frac{1}{a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C = \frac{1}{a}\operatorname{gd}^{-1}(ax)+C}
∫
d
x
cos
n
a
x
=
sin
a
x
a
(
n
−
1
)
cos
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
cos
n
−
2
a
x
(
n
>
1
)
{\displaystyle \int\frac{\mathrm{d}x}{\cos^n ax} = \frac{\sin ax}{a(n-1) \cos^{n-1} ax} + \frac{n-2}{n-1}\int\frac{\mathrm{d}x}{\cos^{n-2} ax} \qquad\mbox{(}n>1\mbox{)}\,\!}
∫
d
x
1
+
cos
a
x
=
1
a
tan
a
x
2
+
C
{\displaystyle \int\frac{\mathrm{d}x}{1+\cos ax} = \frac{1}{a}\tan\frac{ax}{2}+C\,\!}
∫
d
x
1
−
cos
a
x
=
−
1
a
cot
a
x
2
+
C
{\displaystyle \int\frac{\mathrm{d}x}{1-\cos ax} = -\frac{1}{a}\cot\frac{ax}{2}+C\,\!}
∫
x
d
x
1
+
cos
a
x
=
x
a
tan
a
x
2
+
2
a
2
ln
|
cos
a
x
2
|
+
C
{\displaystyle \int\frac{x\;\mathrm{d}x}{1+\cos ax} = \frac{x}{a}\tan\frac{ax}{2} + \frac{2}{a^2}\ln\left|\cos\frac{ax}{2}\right|+C}
∫
x
d
x
1
−
cos
a
x
=
−
x
a
cot
a
x
2
+
2
a
2
ln
|
sin
a
x
2
|
+
C
{\displaystyle \int\frac{x\;\mathrm{d}x}{1-\cos ax} = -\frac{x}{a}\cot\frac{ax}{2}+\frac{2}{a^2}\ln\left|\sin\frac{ax}{2}\right|+C}
∫
cos
a
x
d
x
1
+
cos
a
x
=
x
−
1
a
tan
a
x
2
+
C
{\displaystyle \int\frac{\cos ax\;\mathrm{d}x}{1+\cos ax} = x - \frac{1}{a}\tan\frac{ax}{2}+C\,\!}
∫
cos
a
x
d
x
1
−
cos
a
x
=
−
x
−
1
a
cot
a
x
2
+
C
{\displaystyle \int\frac{\cos ax\;\mathrm{d}x}{1-\cos ax} = -x-\frac{1}{a}\cot\frac{ax}{2}+C\,\!}
∫
cos
a
1
x
cos
a
2
x
d
x
=
sin
(
a
1
−
a
2
)
x
2
(
a
1
−
a
2
)
+
sin
(
a
1
+
a
2
)
x
2
(
a
1
+
a
2
)
+
C
(
|
a
1
|
≠
|
a
2
|
)
{\displaystyle \int\cos a_1x\cos a_2x\;\mathrm{d}x = \frac{\sin(a_1-a_2)x}{2(a_1-a_2)}+\frac{\sin(a_1+a_2)x}{2(a_1+a_2)}+C \qquad\mbox{(}|a_1|\neq|a_2|\mbox{)}\,\!}
正接関数のみを含む式の原始関数 [ ]
∫
tan
a
x
d
x
=
−
1
a
ln
|
cos
a
x
|
+
C
=
1
a
ln
|
sec
a
x
|
+
C
{\displaystyle \int\tan ax\;\mathrm{d}x = -\frac{1}{a}\ln|\cos ax|+C = \frac{1}{a}\ln|\sec ax|+C\,\!}
∫
tan
n
a
x
d
x
=
1
a
(
n
−
1
)
tan
n
−
1
a
x
−
∫
tan
n
−
2
a
x
d
x
(
n
≠
1
)
{\displaystyle \int\tan^n ax\;\mathrm{d}x = \frac{1}{a(n-1)}\tan^{n-1} ax-\int\tan^{n-2} ax\;\mathrm{d}x \qquad\mbox{(}n\neq 1\mbox{)}\,\!}
∫
d
x
q
tan
a
x
+
p
=
1
p
2
+
q
2
(
p
x
+
q
a
ln
|
q
sin
a
x
+
p
cos
a
x
|
)
+
C
(
p
2
+
q
2
≠
0
)
{\displaystyle \int\frac{\mathrm{d}x}{q \tan ax + p} = \frac{1}{p^2 + q^2}(px + \frac{q}{a}\ln|q\sin ax + p\cos ax|)+C \qquad\mbox{(}p^2 + q^2\neq 0\mbox{)}\,\!}
∫
d
x
tan
a
x
+
1
=
x
2
+
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int\frac{\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!}
∫
d
x
tan
a
x
−
1
=
−
x
2
+
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int\frac{\mathrm{d}x}{\tan ax - 1} = -\frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!}
∫
tan
a
x
d
x
tan
a
x
+
1
=
x
2
−
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int\frac{\tan ax\;\mathrm{d}x}{\tan ax + 1} = \frac{x}{2} - \frac{1}{2a}\ln|\sin ax + \cos ax|+C\,\!}
∫
tan
a
x
d
x
tan
a
x
−
1
=
x
2
+
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int\frac{\tan ax\;\mathrm{d}x}{\tan ax - 1} = \frac{x}{2} + \frac{1}{2a}\ln|\sin ax - \cos ax|+C\,\!}
正割関数のみを含む式の原始関数 [ ]
∫
sec
a
x
d
x
=
1
a
ln
|
sec
a
x
+
tan
a
x
|
+
C
=
1
a
gd
−
1
(
a
x
)
+
C
{\displaystyle \int \sec{ax} \, \mathrm{d}x = \frac{1}{a}\ln{\left| \sec{ax} + \tan{ax}\right|}+C = \frac{1}{a}\operatorname{gd}^{-1}(ax)+C}
∫
sec
2
x
d
x
=
tan
x
+
C
{\displaystyle \int \sec^2{x} \, \mathrm{d}x = \tan{x}+C}
∫
sec
n
a
x
d
x
=
sec
n
−
2
a
x
tan
a
x
a
(
n
−
1
)
+
n
−
2
n
−
1
∫
sec
n
−
2
a
x
d
x
(
n
≠
1
)
{\displaystyle \int \sec^n{ax} \, \mathrm{d}x = \frac{\sec^{n-2}{ax} \tan {ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{ax} \, \mathrm{d}x \qquad \mbox{(}n \ne 1\mbox{)}\,\!}
∫
sec
n
x
d
x
=
sec
n
−
2
x
tan
x
n
−
1
+
n
−
2
n
−
1
∫
sec
n
−
2
x
d
x
{\displaystyle \int \sec^n{x} \, \mathrm{d}x = \frac{\sec^{n-2}{x}\tan{x}}{n-1} \,+\, \frac{n-2}{n-1}\int \sec^{n-2}{x}\,\mathrm{d}x}
[15]
∫
d
x
sec
x
+
1
=
x
−
tan
x
2
+
C
{\displaystyle \int \frac{\mathrm{d}x}{\sec{x} + 1} = x - \tan{\frac{x}{2}}+C}
∫
d
x
sec
x
−
1
=
−
x
−
cot
x
2
+
C
{\displaystyle \int \frac{\mathrm{d}x}{\sec{x} - 1} = - x - \cot{\frac{x}{2}}+C}
余割関数のみを含む式の原始関数 [ ]
∫
csc
a
x
d
x
=
−
1
a
ln
|
csc
a
x
+
cot
a
x
|
+
C
{\displaystyle \int \csc{ax} \, \mathrm{d}x = -\frac{1}{a}\ln{\left| \csc{ax}+\cot{ax}\right|}+C}
∫
csc
2
x
d
x
=
−
cot
x
+
C
{\displaystyle \int \csc^2{x} \, \mathrm{d}x = -\cot{x}+C}
∫
csc
n
a
x
d
x
=
−
csc
n
−
1
a
x
cos
a
x
a
(
n
−
1
)
+
n
−
2
n
−
1
∫
csc
n
−
2
a
x
d
x
(
n
≠
1
)
{\displaystyle \int \csc^n{ax} \, \mathrm{d}x = -\frac{\csc^{n-1}{ax} \cos{ax}}{a(n-1)} \,+\, \frac{n-2}{n-1}\int \csc^{n-2}{ax} \, \mathrm{d}x \qquad \mbox{(}n \ne 1\mbox{)}\,\!}
∫
d
x
csc
x
+
1
=
x
−
2
sin
x
2
cos
x
2
+
sin
x
2
+
C
{\displaystyle \int \frac{\mathrm{d}x}{\csc{x} + 1} = x - \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}+\sin{\frac{x}{2}}}+C}
∫
d
x
csc
x
−
1
=
2
sin
x
2
cos
x
2
−
sin
x
2
−
x
+
C
{\displaystyle \int \frac{\mathrm{d}x}{\csc{x} - 1} = \frac{2\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}-\sin{\frac{x}{2}}}-x+C}
余接関数のみを含む式の原始関数 [ ]
∫
cot
a
x
d
x
=
1
a
ln
|
sin
a
x
|
+
C
{\displaystyle \int\cot ax\;\mathrm{d}x = \frac{1}{a}\ln|\sin ax|+C\,\!}
∫
cot
n
a
x
d
x
=
−
1
a
(
n
−
1
)
cot
n
−
1
a
x
−
∫
cot
n
−
2
a
x
d
x
(
n
≠
1
)
{\displaystyle \int\cot^n ax\;\mathrm{d}x = -\frac{1}{a(n-1)}\cot^{n-1} ax - \int\cot^{n-2} ax\;\mathrm{d}x \qquad\mbox{(}n\neq 1\mbox{)}\,\!}
∫
d
x
1
+
cot
a
x
=
∫
tan
a
x
d
x
tan
a
x
+
1
{\displaystyle \int\frac{\mathrm{d}x}{1 + \cot ax} = \int\frac{\tan ax\;\mathrm{d}x}{\tan ax+1}\,\!}
∫
d
x
1
−
cot
a
x
=
∫
tan
a
x
d
x
tan
a
x
−
1
{\displaystyle \int\frac{\mathrm{d}x}{1 - \cot ax} = \int\frac{\tan ax\;\mathrm{d}x}{\tan ax-1}\,\!}
正弦関数と余弦関数を含む式の原始関数 [ ]
∫
d
x
cos
a
x
±
sin
a
x
=
1
a
2
ln
|
tan
(
a
x
2
±
π
8
)
|
+
C
{\displaystyle \int\frac{\mathrm{d}x}{\cos ax\pm\sin ax} = \frac{1}{a\sqrt{2}}\ln\left|\tan\left(\frac{ax}{2}\pm\frac{\pi}{8}\right)\right|+C}
∫
d
x
(
cos
a
x
±
sin
a
x
)
2
=
1
2
a
tan
(
a
x
∓
π
4
)
+
C
{\displaystyle \int\frac{\mathrm{d}x}{(\cos ax\pm\sin ax)^2} = \frac{1}{2a}\tan\left(ax\mp\frac{\pi}{4}\right)+C}
∫
d
x
(
cos
x
+
sin
x
)
n
=
1
n
−
1
(
sin
x
−
cos
x
(
cos
x
+
sin
x
)
n
−
1
−
2
(
n
−
2
)
∫
d
x
(
cos
x
+
sin
x
)
n
−
2
)
{\displaystyle \int\frac{\mathrm{d}x}{(\cos x + \sin x)^n} = \frac{1}{n-1}\left(\frac{\sin x - \cos x}{(\cos x + \sin x)^{n - 1}} - 2(n - 2)\int\frac{\mathrm{d}x}{(\cos x + \sin x)^{n-2}} \right)}
∫
cos
a
x
d
x
cos
a
x
+
sin
a
x
=
x
2
+
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int\frac{\cos ax\;\mathrm{d}x}{\cos ax + \sin ax} = \frac{x}{2} + \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C}
∫
cos
a
x
d
x
cos
a
x
−
sin
a
x
=
x
2
−
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int\frac{\cos ax\;\mathrm{d}x}{\cos ax - \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C}
∫
sin
a
x
d
x
cos
a
x
+
sin
a
x
=
x
2
−
1
2
a
ln
|
sin
a
x
+
cos
a
x
|
+
C
{\displaystyle \int\frac{\sin ax\;\mathrm{d}x}{\cos ax + \sin ax} = \frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax + \cos ax\right|+C}
∫
sin
a
x
d
x
cos
a
x
−
sin
a
x
=
−
x
2
−
1
2
a
ln
|
sin
a
x
−
cos
a
x
|
+
C
{\displaystyle \int\frac{\sin ax\;\mathrm{d}x}{\cos ax - \sin ax} = -\frac{x}{2} - \frac{1}{2a}\ln\left|\sin ax - \cos ax\right|+C}
∫
cos
a
x
d
x
sin
a
x
(
1
+
cos
a
x
)
=
−
1
4
a
tan
2
a
x
2
+
1
2
a
ln
|
tan
a
x
2
|
+
C
{\displaystyle \int\frac{\cos ax\;\mathrm{d}x}{\sin ax(1+\cos ax)} = -\frac{1}{4a}\tan^2\frac{ax}{2}+\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C}
∫
cos
a
x
d
x
sin
a
x
(
1
−
cos
a
x
)
=
−
1
4
a
cot
2
a
x
2
−
1
2
a
ln
|
tan
a
x
2
|
+
C
{\displaystyle \int\frac{\cos ax\;\mathrm{d}x}{\sin ax(1-\cos ax)} = -\frac{1}{4a}\cot^2\frac{ax}{2}-\frac{1}{2a}\ln\left|\tan\frac{ax}{2}\right|+C}
∫
sin
a
x
d
x
cos
a
x
(
1
+
sin
a
x
)
=
1
4
a
cot
2
(
a
x
2
+
π
4
)
+
1
2
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
{\displaystyle \int\frac{\sin ax\;\mathrm{d}x}{\cos ax(1+\sin ax)} = \frac{1}{4a}\cot^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)+\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C}
∫
sin
a
x
d
x
cos
a
x
(
1
−
sin
a
x
)
=
1
4
a
tan
2
(
a
x
2
+
π
4
)
−
1
2
a
ln
|
tan
(
a
x
2
+
π
4
)
|
+
C
{\displaystyle \int\frac{\sin ax\;\mathrm{d}x}{\cos ax(1-\sin ax)} = \frac{1}{4a}\tan^2\left(\frac{ax}{2}+\frac{\pi}{4}\right)-\frac{1}{2a}\ln\left|\tan\left(\frac{ax}{2}+\frac{\pi}{4}\right)\right|+C}
∫
sin
a
x
cos
a
x
d
x
=
−
1
2
a
cos
2
a
x
+
C
{\displaystyle \int\sin ax\cos ax\;\mathrm{d}x = -\frac{1}{2a}\cos^2 ax +C\,\!}
∫
sin
a
1
x
cos
a
2
x
d
x
=
−
cos
(
(
a
1
−
a
2
)
x
)
2
(
a
1
−
a
2
)
−
cos
(
(
a
1
+
a
2
)
x
)
2
(
a
1
+
a
2
)
+
C
(
|
a
1
|
≠
|
a
2
|
)
{\displaystyle \int\sin a_1x\cos a_2x\;\mathrm{d}x = -\frac{\cos((a_1-a_2)x)}{2(a_1-a_2)} -\frac{\cos((a_1+a_2)x)}{2(a_1+a_2)} +C\qquad\mbox{(}|a_1|\neq|a_2|\mbox{)}\,\!}
∫
sin
n
a
x
cos
a
x
d
x
=
1
a
(
n
+
1
)
sin
n
+
1
a
x
+
C
(
n
≠
−
1
)
{\displaystyle \int\sin^n ax\cos ax\;\mathrm{d}x = \frac{1}{a(n+1)}\sin^{n+1} ax +C\qquad\mbox{(}n\neq -1\mbox{)}\,\!}
∫
sin
a
x
cos
n
a
x
d
x
=
−
1
a
(
n
+
1
)
cos
n
+
1
a
x
+
C
(
n
≠
−
1
)
{\displaystyle \int\sin ax\cos^n ax\;\mathrm{d}x = -\frac{1}{a(n+1)}\cos^{n+1} ax +C\qquad\mbox{(}n\neq -1\mbox{)}\,\!}
∫
sin
n
a
x
cos
m
a
x
d
x
=
−
sin
n
−
1
a
x
cos
m
+
1
a
x
a
(
n
+
m
)
+
n
−
1
n
+
m
∫
sin
n
−
2
a
x
cos
m
a
x
d
x
(
m
,
n
>
0
)
{\displaystyle \int\sin^n ax\cos^m ax\;\mathrm{d}x = -\frac{\sin^{n-1} ax\cos^{m+1} ax}{a(n+m)}+\frac{n-1}{n+m}\int\sin^{n-2} ax\cos^m ax\;\mathrm{d}x \qquad\mbox{(}m,n>0\mbox{)}\,\!}
または
∫
sin
n
a
x
cos
m
a
x
d
x
=
sin
n
+
1
a
x
cos
m
−
1
a
x
a
(
n
+
m
)
+
m
−
1
n
+
m
∫
sin
n
a
x
cos
m
−
2
a
x
d
x
(
m
,
n
>
0
)
{\displaystyle \int\sin^n ax\cos^m ax\;\mathrm{d}x = \frac{\sin^{n+1} ax\cos^{m-1} ax}{a(n+m)} + \frac{m-1}{n+m}\int\sin^n ax\cos^{m-2} ax\;\mathrm{d}x \qquad\mbox{(}m,n>0\mbox{)}\,\!}
∫
d
x
sin
a
x
cos
a
x
=
1
a
ln
|
tan
a
x
|
+
C
{\displaystyle \int\frac{\mathrm{d}x}{\sin ax\cos ax} = \frac{1}{a}\ln\left|\tan ax\right|+C}
∫
d
x
sin
a
x
cos
n
a
x
=
1
a
(
n
−
1
)
cos
n
−
1
a
x
+
∫
d
x
sin
a
x
cos
n
−
2
a
x
(
n
≠
1
)
{\displaystyle \int\frac{\mathrm{d}x}{\sin ax\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax}+\int\frac{\mathrm{d}x}{\sin ax\cos^{n-2} ax} \qquad\mbox{(}n\neq 1\mbox{)}\,\!}
∫
d
x
sin
n
a
x
cos
a
x
=
−
1
a
(
n
−
1
)
sin
n
−
1
a
x
+
∫
d
x
sin
n
−
2
a
x
cos
a
x
(
n
≠
1
)
{\displaystyle \int\frac{\mathrm{d}x}{\sin^n ax\cos ax} = -\frac{1}{a(n-1)\sin^{n-1} ax}+\int\frac{\mathrm{d}x}{\sin^{n-2} ax\cos ax} \qquad\mbox{(}n\neq 1\mbox{)}\,\!}
∫
sin
a
x
d
x
cos
n
a
x
=
1
a
(
n
−
1
)
cos
n
−
1
a
x
+
C
(
n
≠
1
)
{\displaystyle \int\frac{\sin ax\;\mathrm{d}x}{\cos^n ax} = \frac{1}{a(n-1)\cos^{n-1} ax} +C\qquad\mbox{(}n\neq 1\mbox{)}\,\!}
∫
sin
2
a
x
d
x
cos
a
x
=
−
1
a
sin
a
x
+
1
a
ln
|
tan
(
π
4
+
a
x
2
)
|
+
C
{\displaystyle \int\frac{\sin^2 ax\;\mathrm{d}x}{\cos ax} = -\frac{1}{a}\sin ax+\frac{1}{a}\ln\left|\tan\left(\frac{\pi}{4}+\frac{ax}{2}\right)\right|+C}
∫
sin
2
a
x
d
x
cos
n
a
x
=
sin
a
x
a
(
n
−
1
)
cos
n
−
1
a
x
−
1
n
−
1
∫
d
x
cos
n
−
2
a
x
(
n
≠
1
)
{\displaystyle \int\frac{\sin^2 ax\;\mathrm{d}x}{\cos^n ax} = \frac{\sin ax}{a(n-1)\cos^{n-1}ax}-\frac{1}{n-1}\int\frac{\mathrm{d}x}{\cos^{n-2}ax} \qquad\mbox{(}n\neq 1\mbox{)}\,\!}
∫
sin
n
a
x
d
x
cos
a
x
=
−
sin
n
−
1
a
x
a
(
n
−
1
)
+
∫
sin
n
−
2